Loading...
20-101386-Structural Calculations-04-09-2020-V1Civil Engineers ● Structural Engineers ● Landscape Architects ● Community Planners ● Land Surveyors ● Neighbors Structural Calculations PREPARED FOR: PROJECT: IRG Greenline Building A 2180307.20 PREPARED BY: Larry Higgins PE Sr. Engineer REVIEWED BY: Danial L. Booth PE SE Principal DATE: August 2018 Nelson 1200 Fifth Avenue Suite 1300 Seattle, WA 98101 Structural Calculations For IRG Greenline Building A Federal Way, WA Project # 2180307.20 Project Principal Danial L. Booth PE SE Sr. Engineer Larry Higgins PE Design Criteria Design Codes and Standards Codes and Standards: Structural design and construction shall be in accordance with the applicable sections of the following codes and standards as adopted and amended by the local building authority: International Building Code, 2015 Edition. Structural Design Criteria: Live Load Criteria: Roof (Min Blanket Snow)25 psf Slab on Grade 250 psf Wind Load Criteria: Ultimate Wind Speed 110 mph Risk Category II Wind Exposure B Topographic Factor 1.0 Seismic Criteria: Risk Category II Seismic Importance Factor 1.0 Ss = 1.279 S1 = 0.491 Sds = 0.853 Sd1 = 0.428 Site Class = E Seismic Design Category = D Response Modification Coeff. (R): 5.0 Seismic Response Coeff. (Cs): 0.171 08/13/2018 Soil Criteria: Based on Geotechnical Engineering Report by: GeoEngineers, dated March 9, 2017. Allowable Soil Bearing Capacity: 4000psf, allow 33% increase for loads from wind or seismic origin. Active Earth Pressure = 35pcf (un-restrained) / 55pcf (restrained Friction Coefficient = 0.35 (SF=1.5) Passive Pressure = 300psf (SF=1.5) Project Description The project consists of standard single loaded concrete tilt warehouse/distribution building. The walls consist of concrete tilt bearing walls, steel joist and joist girders, wood purlins and plywood sheathed roof. Design Maps Summary Report Report Title Building Code Reference Document Site Coordinates Site Soil Classification Risk Category User–Specified Input IRG Greenline Tue June 12, 2018 17:25:23 UTC ASCE 7-10 Standard (which utilizes USGS hazard data available in 2008) 47.29909°N, 122.29457°W Site Class C – “Very Dense Soil and Soft Rock” I/II/III USGS–Provided Output SS =1.279 g SMS =1.279 g SDS =0.853 g S1 =0.491 g SM1 =0.643 g SD1 =0.428 g For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the “2009 NEHRP” building code reference document. For PGAM, TL, CRS, and CR1 values, please view the detailed report. Page 1 of 2Design Maps Summary Report 6/12/2018https://prod02-earthquake.cr.usgs.gov/designmaps/us/summary.php?template=minimal&la... General Footing Licensee : AHBL, INCLic. # : KW-06001735 Description :F5.0 AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:02AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . Code References Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : ASCE 7-10 General Information Material Properties Soil Design Values 4.0 Analysis Settings 250.0ksi No ksfAllowable Soil Bearing = = 3.0 60.0 3,122.0 145.0 =0.30 Flexure =0.90 Shear = ValuesM 0.00180 Soil Passive Resistance (for Sliding) 1.0 = Increases based on footing plan dimension Add Pedestal Wt for Soil Pressure No: Use Pedestal wt for stability, mom & shear No: Allowable pressure increase per foot of depth =ksfwhen max. length or width is greater than =ft : = Add Ftg Wt for Soil Pressure No Yes:Use ftg wt for stability, moments & shears when footing base is below ft pcf Increase Bearing By Footing Weight =pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus = =Footing base depth below soil surface ft =Allow press. increase per foot of depth ksf = : 11.0Min. Sliding Safety Factor = = Concrete Density = Min Allow % Temp Reinf. ksif'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. # Dimensions Width parallel to X-X Axis 5 ft Length parallel to Z-Z Axis = 5.0 ft =Pedestal dimensions... px : parallel to X-X Axis 12.0 in pz : parallel to Z-Z Axis 12.0 in Height == in Footing Thickness = 13.0 in= Rebar Centerline to Edge of Concrete...=inat Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 5 Number of Bars = 6 Bars parallel to Z-Z Axis Reinforcing Bar Size =5 Number of Bars =6 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 32 68.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = =k V-z k M-xx = k-ft= k-ft H = General Footing Licensee : AHBL, INCLic. # : KW-06001735 Description :F5.0 AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:02AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . PASS n/a Sliding - X-X 0.0 k 0.0 k No Sliding PASS n/a Sliding - Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load CombinationMin. Ratio Item Applied Capacity PASS 1.0 Soil Bearing 4.0 ksf 4.0 ksf +D+S about Z-Z axis PASS n/a Overturning - X-X 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Overturning - Z-Z 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.7301 Z Flexure (+X)11.776 k-ft/ft 16.129 k-ft/ft +1.20D+1.60S PASS 0.7301 Z Flexure (-X)11.776 k-ft/ft 16.129 k-ft/ft +1.20D+1.60S PASS 0.7301 X Flexure (+Z)11.776 k-ft/ft 16.129 k-ft/ft +1.20D+1.60S PASS 0.7301 X Flexure (-Z)11.776 k-ft/ft 16.129 k-ft/ft +1.20D+1.60S PASS 0.6868 1-way Shear (+X)56.427 psi 82.158 psi +1.20D+1.60S PASS 0.6868 1-way Shear (-X)56.427 psi 82.158 psi +1.20D+1.60S PASS 0.6868 1-way Shear (+Z)56.427 psi 82.158 psi +1.20D+1.60S PASS 0.6868 1-way Shear (-Z)56.427 psi 82.158 psi +1.20D+1.60S PASS 0.8861 2-way Punching 145.594 psi 164.317 psi +1.20D+1.60S Detailed Results Rotation Axis &ZeccXecc Actual Soil Bearing Stress @ Location Actual / Allow Soil Bearing (in)Gross Allowable Bottom, -Z Top, +Z Left, -X Right, +X RatioLoad Combination... X-X, D Only 4.0 n/a1.280 1.280 n/a 0.3200.0n/a X-X, +D+S 4.0 n/a4.0 4.0 n/a 1.0000.0n/a X-X, +D+0.750S 4.0 n/a3.320 3.320 n/a 0.8300.0n/a X-X, +0.60D 4.0 n/a0.7680 0.7680 n/a 0.1920.0n/a Z-Z, D Only 4.0 1.280n/a n/a 1.280 0.320n/a0.0 Z-Z, +D+S 4.0 4.0n/a n/a 4.0 1.000n/a0.0 Z-Z, +D+0.750S 4.0 3.320n/a n/a 3.320 0.830n/a0.0 Z-Z, +0.60D 4.0 0.7680n/a n/a 0.7680 0.192n/a0.0 General Footing Licensee : AHBL, INCLic. # : KW-06001735 Description :F5.5 AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:02AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . Code References Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : ASCE 7-10 General Information Material Properties Soil Design Values 4.0 Analysis Settings 250.0ksi No ksfAllowable Soil Bearing = = 3.0 60.0 3,122.0 145.0 =0.30 Flexure =0.90 Shear = ValuesM 0.00180 Soil Passive Resistance (for Sliding) 1.0 = Increases based on footing plan dimension Add Pedestal Wt for Soil Pressure No: Use Pedestal wt for stability, mom & shear No: Allowable pressure increase per foot of depth =ksfwhen max. length or width is greater than =ft : = Add Ftg Wt for Soil Pressure No Yes:Use ftg wt for stability, moments & shears when footing base is below ft pcf Increase Bearing By Footing Weight =pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus = =Footing base depth below soil surface ft =Allow press. increase per foot of depth ksf = : 11.0Min. Sliding Safety Factor = = Concrete Density = Min Allow % Temp Reinf. ksif'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. # Dimensions Width parallel to X-X Axis 5.5 ft Length parallel to Z-Z Axis = 5.50 ft =Pedestal dimensions... px : parallel to X-X Axis 12.0 in pz : parallel to Z-Z Axis 12.0 in Height == in Footing Thickness = 14.0 in= Rebar Centerline to Edge of Concrete...=inat Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 5 Number of Bars = 7 Bars parallel to Z-Z Axis Reinforcing Bar Size =5 Number of Bars =7 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 39.0 82.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = =k V-z k M-xx = k-ft= k-ft H = General Footing Licensee : AHBL, INCLic. # : KW-06001735 Description :F5.5 AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:02AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . PASS n/a Sliding - X-X 0.0 k 0.0 k No Sliding PASS n/a Sliding - Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load CombinationMin. Ratio Item Applied Capacity PASS 1.0 Soil Bearing 4.0 ksf 4.0 ksf +D+S about Z-Z axis PASS n/a Overturning - X-X 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Overturning - Z-Z 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.7904 Z Flexure (+X)14.895 k-ft/ft 18.843 k-ft/ft +1.20D+1.60S PASS 0.7904 Z Flexure (-X)14.895 k-ft/ft 18.843 k-ft/ft +1.20D+1.60S PASS 0.7904 X Flexure (+Z)14.895 k-ft/ft 18.843 k-ft/ft +1.20D+1.60S PASS 0.7904 X Flexure (-Z)14.895 k-ft/ft 18.843 k-ft/ft +1.20D+1.60S PASS 0.7162 1-way Shear (+X)58.843 psi 82.158 psi +1.20D+1.60S PASS 0.7162 1-way Shear (-X)58.843 psi 82.158 psi +1.20D+1.60S PASS 0.7162 1-way Shear (+Z)58.843 psi 82.158 psi +1.20D+1.60S PASS 0.7162 1-way Shear (-Z)58.843 psi 82.158 psi +1.20D+1.60S PASS 0.9467 2-way Punching 155.557 psi 164.317 psi +1.20D+1.60S Detailed Results Rotation Axis &ZeccXecc Actual Soil Bearing Stress @ Location Actual / Allow Soil Bearing (in)Gross Allowable Bottom, -Z Top, +Z Left, -X Right, +X RatioLoad Combination... X-X, D Only 4.0 n/a1.289 1.289 n/a 0.3220.0n/a X-X, +D+S 4.0 n/a4.0 4.0 n/a 1.0000.0n/a X-X, +D+0.750S 4.0 n/a3.322 3.322 n/a 0.8310.0n/a X-X, +0.60D 4.0 n/a0.7736 0.7736 n/a 0.1930.0n/a Z-Z, D Only 4.0 1.289n/a n/a 1.289 0.322n/a0.0 Z-Z, +D+S 4.0 4.0n/a n/a 4.0 1.000n/a0.0 Z-Z, +D+0.750S 4.0 3.322n/a n/a 3.322 0.831n/a0.0 Z-Z, +0.60D 4.0 0.7736n/a n/a 0.7736 0.193n/a0.0 General Footing Licensee : AHBL, INCLic. # : KW-06001735 Description :F6.0 (FUTURE MEZZ) AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:02AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . Code References Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : ASCE 7-10 General Information Material Properties Soil Design Values 4.0 Analysis Settings 250.0ksi No ksfAllowable Soil Bearing = = 3.0 60.0 3,122.0 145.0 =0.30 Flexure =0.90 Shear = ValuesM 0.00180 Soil Passive Resistance (for Sliding) 1.0 = Increases based on footing plan dimension Add Pedestal Wt for Soil Pressure No: Use Pedestal wt for stability, mom & shear No: Allowable pressure increase per foot of depth =ksfwhen max. length or width is greater than =ft : = Add Ftg Wt for Soil Pressure No Yes:Use ftg wt for stability, moments & shears when footing base is below ft pcf Increase Bearing By Footing Weight =pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus = =Footing base depth below soil surface ft =Allow press. increase per foot of depth ksf = : 11.0Min. Sliding Safety Factor = = Concrete Density = Min Allow % Temp Reinf. ksif'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. # Dimensions Width parallel to X-X Axis 6.0 ft Length parallel to Z-Z Axis = 6.0 ft =Pedestal dimensions... px : parallel to X-X Axis 12.0 in pz : parallel to Z-Z Axis 12.0 in Height == in Footing Thickness = 16.0 in= Rebar Centerline to Edge of Concrete...=inat Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 5 Number of Bars = 8.0 Bars parallel to Z-Z Axis Reinforcing Bar Size =5 Number of Bars =8.0 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 56.0 87.20 16.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = =k V-z k M-xx = k-ft= k-ft H = General Footing Licensee : AHBL, INCLic. # : KW-06001735 Description :F6.0 (FUTURE MEZZ) AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:02AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . PASS n/a Sliding - X-X 0.0 k 0.0 k No Sliding PASS n/a Sliding - Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load CombinationMin. Ratio Item Applied Capacity PASS 0.9945 Soil Bearing 3.978 ksf 4.0 ksf +D+L about Z-Z axis PASS n/a Overturning - X-X 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Overturning - Z-Z 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.7956 Z Flexure (+X)18.638 k-ft/ft 23.426 k-ft/ft +1.20D+1.60L+0.50S PASS 0.7956 Z Flexure (-X)18.638 k-ft/ft 23.426 k-ft/ft +1.20D+1.60L+0.50S PASS 0.7956 X Flexure (+Z)18.638 k-ft/ft 23.426 k-ft/ft +1.20D+1.60L+0.50S PASS 0.7956 X Flexure (-Z)18.638 k-ft/ft 23.426 k-ft/ft +1.20D+1.60L+0.50S PASS 0.6701 1-way Shear (+X)55.056 psi 82.158 psi +1.20D+1.60L+0.50S PASS 0.6701 1-way Shear (-X)55.056 psi 82.158 psi +1.20D+1.60L+0.50S PASS 0.6701 1-way Shear (+Z)55.056 psi 82.158 psi +1.20D+1.60L+0.50S PASS 0.6701 1-way Shear (-Z)55.056 psi 82.158 psi +1.20D+1.60L+0.50S PASS 0.8890 2-way Punching 146.076 psi 164.317 psi +1.20D+1.60L+0.50S Detailed Results Rotation Axis &ZeccXecc Actual Soil Bearing Stress @ Location Actual / Allow Soil Bearing (in)Gross Allowable Bottom, -Z Top, +Z Left, -X Right, +X RatioLoad Combination... X-X, D Only 4.0 n/a1.556 1.556 n/a 0.3890.0n/a X-X, +D+L 4.0 n/a3.978 3.978 n/a 0.9950.0n/a X-X, +D+S 4.0 n/a2.0 2.0 n/a 0.5000.0n/a X-X, +D+0.750L 4.0 n/a3.372 3.372 n/a 0.8430.0n/a X-X, +D+0.750L+0.750S 4.0 n/a3.706 3.706 n/a 0.9270.0n/a X-X, +0.60D 4.0 n/a0.9333 0.9333 n/a 0.2330.0n/a Z-Z, D Only 4.0 1.556n/a n/a 1.556 0.389n/a0.0 Z-Z, +D+L 4.0 3.978n/a n/a 3.978 0.995n/a0.0 Z-Z, +D+S 4.0 2.0n/a n/a 2.0 0.500n/a0.0 Z-Z, +D+0.750L 4.0 3.372n/a n/a 3.372 0.843n/a0.0 Z-Z, +D+0.750L+0.750S 4.0 3.706n/a n/a 3.706 0.927n/a0.0 Z-Z, +0.60D 4.0 0.9333n/a n/a 0.9333 0.233n/a0.0 General Footing Licensee : AHBL, INCLic. # : KW-06001735 Description :F8.0 (FUTURE MEZZ) AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:02AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . Code References Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : ASCE 7-10 General Information Material Properties Soil Design Values 4.0 Analysis Settings 250.0ksi No ksfAllowable Soil Bearing = = 3.0 60.0 3,122.0 145.0 =0.30 Flexure =0.90 Shear = ValuesM 0.00180 Soil Passive Resistance (for Sliding) 1.0 = Increases based on footing plan dimension Add Pedestal Wt for Soil Pressure No: Use Pedestal wt for stability, mom & shear No: Allowable pressure increase per foot of depth =ksfwhen max. length or width is greater than =ft : = Add Ftg Wt for Soil Pressure No Yes:Use ftg wt for stability, moments & shears when footing base is below ft pcf Increase Bearing By Footing Weight =pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus = =Footing base depth below soil surface ft =Allow press. increase per foot of depth ksf = : 11.0Min. Sliding Safety Factor = = Concrete Density = Min Allow % Temp Reinf. ksif'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. # Dimensions Width parallel to X-X Axis 8.0 ft Length parallel to Z-Z Axis = 8.0 ft =Pedestal dimensions... px : parallel to X-X Axis 12.0 in pz : parallel to Z-Z Axis 12.0 in Height == in Footing Thickness = 21.0 in= Rebar Centerline to Edge of Concrete...=inat Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 6 Number of Bars = 9 Bars parallel to Z-Z Axis Reinforcing Bar Size =6 Number of Bars =9 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 100.0 140.0 63.60 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = =k V-z k M-xx = k-ft= k-ft H = General Footing Licensee : AHBL, INCLic. # : KW-06001735 Description :F8.0 (FUTURE MEZZ) AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:02AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . PASS n/a Sliding - X-X 0.0 k 0.0 k No Sliding PASS n/a Sliding - Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load CombinationMin. Ratio Item Applied Capacity PASS 0.9870 Soil Bearing 3.948 ksf 4.0 ksf +D+0.750L+0.750S about Z-Z axis PASS n/a Overturning - X-X 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Overturning - Z-Z 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.9218 Z Flexure (+X)35.964 k-ft/ft 39.014 k-ft/ft +1.20D+1.60L+0.50S PASS 0.9218 Z Flexure (-X)35.964 k-ft/ft 39.014 k-ft/ft +1.20D+1.60L+0.50S PASS 0.9218 X Flexure (+Z)35.964 k-ft/ft 39.014 k-ft/ft +1.20D+1.60L+0.50S PASS 0.9218 X Flexure (-Z)35.964 k-ft/ft 39.014 k-ft/ft +1.20D+1.60L+0.50S PASS 0.6618 1-way Shear (+X)54.369 psi 82.158 psi +1.20D+1.60L+0.50S PASS 0.6618 1-way Shear (-X)54.369 psi 82.158 psi +1.20D+1.60L+0.50S PASS 0.6618 1-way Shear (+Z)54.369 psi 82.158 psi +1.20D+1.60L+0.50S PASS 0.6618 1-way Shear (-Z)54.369 psi 82.158 psi +1.20D+1.60L+0.50S PASS 0.9504 2-way Punching 156.166 psi 164.317 psi +1.20D+1.60L+0.50S Detailed Results Rotation Axis &ZeccXecc Actual Soil Bearing Stress @ Location Actual / Allow Soil Bearing (in)Gross Allowable Bottom, -Z Top, +Z Left, -X Right, +X RatioLoad Combination... X-X, D Only 4.0 n/a1.563 1.563 n/a 0.3910.0n/a X-X, +D+L 4.0 n/a3.750 3.750 n/a 0.9380.0n/a X-X, +D+S 4.0 n/a2.556 2.556 n/a 0.6390.0n/a X-X, +D+0.750L 4.0 n/a3.203 3.203 n/a 0.8010.0n/a X-X, +D+0.750L+0.750S 4.0 n/a3.948 3.948 n/a 0.9870.0n/a X-X, +0.60D 4.0 n/a0.9375 0.9375 n/a 0.2340.0n/a Z-Z, D Only 4.0 1.563n/a n/a 1.563 0.391n/a0.0 Z-Z, +D+L 4.0 3.750n/a n/a 3.750 0.938n/a0.0 Z-Z, +D+S 4.0 2.556n/a n/a 2.556 0.639n/a0.0 Z-Z, +D+0.750L 4.0 3.203n/a n/a 3.203 0.801n/a0.0 Z-Z, +D+0.750L+0.750S 4.0 3.948n/a n/a 3.948 0.987n/a0.0 Z-Z, +0.60D 4.0 0.9375n/a n/a 0.9375 0.234n/a0.0 Steel Beam Licensee : AHBL, INCLic. # : KW-06001735 Description :Wind Girt 24' span - Dead Load AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:02AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . CODE REFERENCES Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set : ASCE 7-10 Material Properties Analysis Method : ksi Bending Axis :Minor Axis Bending Beam is Fully Braced against lateral-torsional buckling Allowable Strength Design Fy : Steel Yield :46.0 ksi Beam Bracing :E: Modulus :29,000.0 .Service loads entered. Load Factors will be applied for calculations.Applied Loads Beam self weight calculated and added to loading Load for Span Number 1 Uniform Load : D = 0.060 k/ft, Tributary Width = 1.0 ft Load for Span Number 2 Uniform Load : D = 0.060 k/ft, Tributary Width = 1.0 ft Point Load : D = 0.60 k @ 6.0 ft .Design OKDESIGN SUMMARY Maximum Bending Stress Ratio =0.116 : 1 Load Combination D Only Span # where maximum occurs Span # 1 Location of maximum on span 24.000 ft 1.330 k Mn / Omega : Allowable 45.449 k-ft Vn/Omega : Allowable HSS8x6x3/8Section used for this span Span # where maximum occurs Location of maximum on span Span # 1 Load Combination D Only 57.137 k Section used for this span HSS8x6x3/8 Ma : Applied Maximum Shear Stress Ratio =0.023 : 1 24.000 ft 5.266 k-ft Va : Applied 0 <360 1136 Ratio =8199 >=240 Maximum Deflection Max Downward Transient Deflection 0.000 in 0Ratio =<360 Max Upward Transient Deflection 0.000 in Ratio = Max Downward Total Deflection 0.254 in Ratio =>=240 Max Upward Total Deflection -0.018 in . Load Combination Support 1 Support 2 Support 3 Vertical Reactions Support notation : Far left is #1 Values in KIPS Overall MAXimum 0.892 2.486 Overall MINimum 0.535 1.492 D Only 0.892 2.486 +0.60D 0.535 1.492 Steel Beam Licensee : AHBL, INCLic. # : KW-06001735 Description :Wind Girt 24' span - Wind Load AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:03AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . CODE REFERENCES Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set : ASCE 7-10 Material Properties Analysis Method : ksi Bending Axis :Major Axis Bending Beam is Fully Braced against lateral-torsional buckling Allowable Strength Design Fy : Steel Yield :46.0 ksi Beam Bracing :E: Modulus :29,000.0 .Service loads entered. Load Factors will be applied for calculations.Applied Loads Beam self weight NOT internally calculated and added Load for Span Number 1 Uniform Load : W = 0.0240 ksf, Tributary Width = 8.50 ft Load for Span Number 2 Uniform Load : W = 0.0240 ksf, Tributary Width = 8.50 ft .Design OKDESIGN SUMMARY Maximum Bending Stress Ratio =0.140 : 1 Load Combination +0.60W Span # where maximum occurs Span # 1 Location of maximum on span 11.232 ft 1.561 k Mn / Omega : Allowable 55.319 k-ft Vn/Omega : Allowable HSS8x6x3/8Section used for this span Span # where maximum occurs Location of maximum on span Span # 1 Load Combination +0.60W 80.208 k Section used for this span HSS8x6x3/8 Ma : Applied Maximum Shear Stress Ratio =0.019 : 1 24.000 ft 7.746 k-ft Va : Applied 385 >=360 844 Ratio =643 >=240 Maximum Deflection Max Downward Transient Deflection 0.568 in 506Ratio =>=360 Max Upward Transient Deflection -0.373 in Ratio = Max Downward Total Deflection 0.341 in Ratio =>=240 Max Upward Total Deflection -0.224 in . Load Combination Support 1 Support 2 Support 3 Vertical Reactions Support notation : Far left is #1 Values in KIPS Overall MAXimum 2.295 3.825 Overall MINimum 1.033 1.721 +0.60W 1.377 2.295 +0.450W 1.033 1.721 W Only 2.295 3.825 Steel Column Licensee : AHBL, INCLic. # : KW-06001735 Description :Spandrel Support AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:03AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . .Code References Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : ASCE 7-10 General Information Steel Stress Grade Top & Bottom PinnedAnalysis Method : 23.0Overall Column Height ft Top & Bottom FixityAllowable Strength Fy : Steel Yield ksi29,000.0 ksi Steel Section Name :HSS10x10x1/2 36.0 ft E : Elastic Bending Modulus Y-Y (depth) axis : X-X (width) axis : Unbraced Length for X-X Axis buckling = 23.0 ft, K = 1.0 Unbraced Length for Y-Y Axis buckling = 23.0 ft, K = 1.0 Brace condition for deflection (buckling) along columns : .Applied Loads Service loads entered. Load Factors will be applied for calculations. Column self weight included : 1,436.58 lbs * Dead Load Factor AXIAL LOADS . . . Long Spandrel: Axial Load at 23.0 ft, Xecc = 10.0 in, D = 27.30, S = 6.70 k Long Spandrel: Axial Load at 23.0 ft, Xecc = 5.0 in, Yecc = 5.0 in, D = 19.70, S = 1.30 k BENDING LOADS . . . Lat. Point Load at 9.250 ft creating Mx-x, W = 4.40 k Lat. Point Load at 17.0 ft creating Mx-x, W = 4.40 k .DESIGN SUMMARY PASS Max. Axial+Bending Stress Ratio =0.5174 Location of max.above base 23.0 ft 55.0 k 283.285 k -8.750 k-ft Load Combination +D+S Load Combination +D+0.60W 109.042 k-ft Bending & Shear Check Results PASS Maximum Shear Stress Ratio = 3.370 k 0.03256 : 1 Location of max.above base 17.134 ft At maximum location values are . . . : 1 At maximum location values are . . . k 109.042 k-ft -37.083 k-ft Pa : Axial Pn / Omega : Allowable Ma-x : Applied Mn-x / Omega : Allowable Ma-y : Applied Mn-y / Omega : Allowable Va : Applied Vn / Omega : Allowable Maximum Load Reactions . . (see tab for all) Top along X-X 1.612 k Bottom along X-X 1.612 k Top along Y-Y 5.022 k Bottom along Y-Y 3.778 k Maximum Load Deflections . . . Along Y-Y 0.4348 in at 11.732 ft above base for load combination :W Only Along X-X -0.2955 in at 13.430 ft above base for load combination :+D+S 103.507 . Maximum Axial + Bending Stress Ratios Maximum Shear Ratios Load Combination Stress Ratio Location Stress Ratio Status LocationStatus Load Combination Results D Only PASS PASS22.85 0.013 0.00 ftft0.442 +D+S PASS PASS23.00 0.016 0.00 ftft0.517 +D+0.750S PASS PASS23.00 0.015 0.00 ftft0.499 +D+0.60W PASS PASS23.00 0.033 17.13 ftft0.442 +D+0.450W PASS PASS23.00 0.025 17.13 ftft0.442 +D+0.750S+0.450W PASS PASS23.00 0.025 17.13 ftft0.499 +0.60D+0.60W PASS PASS16.98 0.031 17.13 ftft0.310 +0.60D PASS PASS22.85 0.008 0.00 ftft0.265 . k k-ft Note: Only non-zero reactions are listed. Load Combination X-X Axis Reaction Y-Y Axis ReactionAxial Reaction @ Base @ Top@ Base @ Base @ Top Maximum Reactions @ Base @ Base@ Top @ Top Mx - End Moments My - End Moments D Only 0.35748.437 -0.3571.346 1.346 -8.208 -30.958 +D+S 0.38056.437 -0.3801.612 1.612 -8.750 -37.083 Steel Column Licensee : AHBL, INCLic. # : KW-06001735 Description :Spandrel Support AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:03AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . k k-ft Note: Only non-zero reactions are listed. Load Combination X-X Axis Reaction Y-Y Axis ReactionAxial Reaction @ Base @ Top@ Base @ Base @ Top Maximum Reactions @ Base @ Base@ Top @ Top Mx - End Moments My - End Moments +D+0.750S 0.37554.437 -0.3751.546 1.546 -8.615 -35.552 +D+0.60W 3.37048.437 1.9101.346 1.346 -8.208 -30.958 +D+0.450W 2.61748.437 1.3431.346 1.346 -8.208 -30.958 +D+0.750S+0.450W 2.63454.437 1.3261.546 1.546 -8.615 -35.552 +0.60D+0.60W 3.22729.062 2.0530.808 0.808 -4.925 -18.575 +0.60D 0.21429.062 -0.2140.808 0.808 -4.925 -18.575 S Only 0.0248.000 -0.0240.266 0.266 -0.542 -6.125 W Only 5.0223.778 k k-ft Item X-X Axis Reaction Y-Y Axis ReactionAxial Reaction @ Base @ Top@ Base @ Base @ Top Extreme Reactions Extreme Value @ Base @ Base@ Top @ Top Mx - End Moments My - End Moments MaximumAxial @ Base 0.38056.437 -0.3801.612 1.612 -8.750 -37.083 Minimum"5.0223.778 MaximumReaction, X-X Axis Base 0.38056.437 -0.3801.612 1.612 -8.750 -37.083 Minimum"5.0223.778 MaximumReaction, Y-Y Axis Base 5.0223.778 Minimum"0.38056.437 -0.3801.612 1.612 -8.750 -37.083 MaximumReaction, X-X Axis Top 0.38056.437 -0.3801.612 1.612 -8.750 -37.083 Minimum"5.0223.778 MaximumReaction, Y-Y Axis Top 3.37048.437 1.9101.346 1.346 -8.208 -30.958 Minimum"5.0223.778 MaximumMoment, X-X Axis Base 0.35748.437 -0.3571.346 -8.208 -30.958 Minimum"0.35748.437 -0.3571.346 -8.208 -30.958 MaximumMoment, Y-Y Axis Base 0.35748.437 -0.3571.346 1.346 -30.958 -8.208 Minimum"0.35748.437 -0.3571.346 1.346 -30.958 -8.208 MaximumMoment, X-X Axis Top 5.0223.778 Minimum"0.38056.437 -0.3801.612 1.612 -8.750 -37.083 MaximumMoment, Y-Y Axis Top 5.0223.778 Minimum"0.38056.437 -0.3801.612 1.612 -8.750 -37.083 .Maximum Deflections for Load Combinations Max. X-X Deflection Max. Y-Y Deflection DistanceLoad Combination Distance D Only -0.2467 -0.065 13.430 ftftinin13.430 +D+S -0.2955 -0.070 13.430 ftftinin13.430 +D+0.750S -0.2833 -0.069 13.430 ftftinin13.430 +D+0.60W -0.2467 0.197 11.268 ftftinin13.430 +D+0.450W -0.2467 0.132 11.114 ftftinin13.430 +D+0.750S+0.450W -0.2833 0.129 10.960 ftftinin13.430 +0.60D+0.60W -0.1480 0.223 11.423 ftftinin13.430 +0.60D -0.1480 -0.039 13.430 ftftinin13.430 S Only -0.0488 -0.004 13.430 ftftinin13.430 W Only 0.0000 0.435 11.732 ftftinin0.000 .Steel Section Properties :HSS10x10x1/2 Steel Column Licensee : AHBL, INCLic. # : KW-06001735 Description :Spandrel Support AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:03AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . Steel Section Properties :HSS10x10x1/2 R xx = 3.860 in Depth =10.000 in R yy = 3.860 in J =412.000 in^4 Width =10.000 in Wall Thick = 0.500 in Zx =60.700 in^3 Area = 17.200 in^2 Weight =62.460 plf I xx =256.00 in^4 S xx =51.20 in^3Design Thick =0.465 in I yy =256.000 in^4 C =84.200 in^3 S yy =51.200 in^3 Ycg =0.000 in Sketches Steel Beam Licensee : AHBL, INCLic. # : KW-06001735 Description :Entrance Canopy 1 AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:03AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . CODE REFERENCES Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set : ASCE 7-10 Material Properties Analysis Method : ksi Bending Axis :Major Axis Bending Beam bracing is defined as a set spacing over all spans Allowable Strength Design Fy : Steel Yield :46 ksi Beam Bracing :E: Modulus :29,000.0 Unbraced Lengths First Brace starts at ft from Left-Most support Regular spacing of lateral supports on length of beam = 5.0 ft .Service loads entered. Load Factors will be applied for calculations.Applied Loads Beam self weight calculated and added to loading Load(s) for Span Number 1 Point Load : D = 0.390 k @ 2.0 ft Load(s) for Span Number 3 Point Load : D = 0.660, S = 0.940 k @ 0.50 ft Point Load : D = 0.930, S = 0.940 k @ 5.0 ft Point Load : D = 0.930, S = 0.940 k @ 10.0 ft Point Load : D = 0.930, S = 0.940 k @ 15.0 ft Point Load : D = 0.930, S = 0.940 k @ 19.0 ft .Design OKDESIGN SUMMARY Maximum Bending Stress Ratio =0.090 : 1 Load Combination +D+S Span # where maximum occurs Span # 3 Location of maximum on span 20.000 ft 16.694 k Mn / Omega : Allowable 167.794 k-ft Vn/Omega : Allowable HSS18x6x5/16Section used for this span Span # where maximum occurs Location of maximum on span Span # 3 Load Combination +D+S 164.739 k Section used for this span HSS18x6x5/16 Ma : Applied Maximum Shear Stress Ratio =0.101 : 1 20.000 ft 15.159 k-ft Va : Applied 0 <360 9425 Ratio =46352 >=240 Maximum Deflection Max Downward Transient Deflection 0.011 in 21,247Ratio =>=360 Max Upward Transient Deflection 0.000 in Ratio = Max Downward Total Deflection 0.025 in Ratio =>=240 Max Upward Total Deflection -0.001 in . Load Combination Support 1 Support 2 Support 3 Support 4 Support 5 Support 6 Support 7 Vertical Reactions Support notation : Far left is #1 Values in KIPS Overall MAXimum -16.9719.266-3.723 21.940 0.656 Overall MINimum -5.6092.816-0.880 7.262 0.169 D Only -9.3494.693-1.466 12.103 0.486 +D+S -16.9719.266-3.723 21.940 0.656 +D+0.750S -15.0668.123-3.159 19.480 0.614 Steel Beam Licensee : AHBL, INCLic. # : KW-06001735 Description :Entrance Canopy 1 AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:03AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . Load Combination Support 1 Support 2 Support 3 Support 4 Support 5 Support 6 Support 7 Vertical Reactions Support notation : Far left is #1 Values in KIPS +0.60D -5.6092.816-0.880 7.262 0.292 S Only -7.6234.573-2.256 9.837 0.169 Steel Beam Licensee : AHBL, INCLic. # : KW-06001735 Description :Entrance Beam 2 AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:03AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . CODE REFERENCES Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set : ASCE 7-10 Material Properties Analysis Method : ksi Bending Axis :Major Axis Bending Beam is Fully Braced against lateral-torsional buckling Allowable Strength Design Fy : Steel Yield :46 ksi Beam Bracing :E: Modulus :29,000.0 .Service loads entered. Load Factors will be applied for calculations.Applied Loads Beam self weight calculated and added to loading Load(s) for Span Number 1 Point Load : D = 0.3920, S = 0.20 k @ 2.50 ft Load(s) for Span Number 2 Point Load : D = 0.3920, S = 0.20 k @ 2.50 ft Point Load : D = 0.3920, S = 0.20 k @ 7.50 ft Point Load : D = 0.3920, S = 0.20 k @ 22.50 ft .Design OKDESIGN SUMMARY Maximum Bending Stress Ratio =0.034 : 1 Load Combination +D+S Span # where maximum occurs Span # 2 Location of maximum on span 23.500 ft 1.404 k Mn / Omega : Allowable 131.492 k-ft Vn/Omega : Allowable HSS18x6x1/4Section used for this span Span # where maximum occurs Location of maximum on span Span # 2 Load Combination +D+S 110.824 k Section used for this span HSS18x6x1/4 Ma : Applied Maximum Shear Stress Ratio =0.013 : 1 23.500 ft 4.453 k-ft Va : Applied 39,210 >=360 12452 Ratio =7658 >=180 Maximum Deflection Max Downward Transient Deflection 0.004 in 65,363Ratio =>=360 Max Upward Transient Deflection -0.003 in Ratio = Max Downward Total Deflection 0.023 in Ratio =>=180 Max Upward Total Deflection -0.014 in . Load Combination Support 1 Support 2 Support 3 Support 4 Support 5 Vertical Reactions Support notation : Far left is #1 Values in KIPS Overall MAXimum 2.5592.068 -0.889 Overall MINimum 0.4870.507 -0.194 D Only 2.0721.560 -0.695 +D+S 2.5592.068 -0.889 +D+0.750S 2.4371.941 -0.840 +0.60D 1.2430.936 -0.417 S Only 0.4870.507 -0.194 Job Name = Job Number = Wall Type = Wall Description = Wall Ht =35 ft Wall Weight at Mid Height b =0.001 ft Wt of Concrete=150 pcf c =4 ft Wall Thickness=7.25 in. e =4.00 ft Concentric Load=0 plf d =31 ft Seismic Fp=.4Sd*=0.3412 Wp a = 0.0005 ft a = b/2 Roof Weight Joist Span=68 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =12 psf Live Floor=0 psf eccentricity 6 inch equiv DL =408.051 plf equiv SL =850.10625 plf c equiv Lr =408.051 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =30.9 psf P wind equiv =21.9 psf P seismic equiv =30.9 psf Equivalent Wind and Seismic Load IRG Greenline 2180307.2 1 Blank Panel Tall Page 1 Description Panel 1 Equivalent Moments Multi-Span Steel BeamRev: 580010 User: KW-0602298, Ver 5.8.0, 15-Jun-2007 (c)1983-2007 ENERCALC Engineering Software 2180307_irg.ecw:Calculations Scope : Title :Job # Description : Dsgnr:Date:11:02AM, 8 AUG 18 General Information Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Fy - Yield Stress Spans Considered Continuous Over Supports 36.00 ksi Load Duration Factor 1.00 Span Information SeismicDescription Wind wind wind Span ft 3.00 35.00 3.00 3.00 35.00 3.00 Steel Section W8X24 W8X24 W8X24 W8X24 W8X24 W8X24 Pin-Pin Pin-Pin Pin-Free Pin-Pin Pin-Pin Pin-Free 0.00ft 0.00 0.00 0.00 0.00 0.00Unbraced Length End Fixity Loads Live Load Used This Span ?Yes Yes Yes Yes Yes Yes 0.031 0.031 -0.031 0.022 0.022 -0.022Dead Load k/ft Live Load k/ft Results 0.00 2.87 0.00 0.00 2.04 0.00Mmax @ Cntr k-ft @ X =ft 0.00 21.70 0.00 0.00 21.70 0.00 Max @ Left End 0.00 -4.44 0.14 0.00 -3.15 0.10k-ft Max @ Right End -4.44 0.14 0.00 -3.15 0.10 0.00k-ft fb : Actual 2,554.0 2,554.0 80.3 1,812.5 1,812.5 57.0 Fb : Allowable psi 23,760.0 23,760.0 23,760.0 23,760.0 23,760.0 23,760.0 Bending OK Bending OK Bending OK 346.6fv : Actual 785.5 34.0 557.5 47.9 245.9 14,400.0 psi 14,400.0 14,400.0Fv : Allowable 14,400.0 14,400.0 14,400.0psi Bending OKBending OK Bending OK psi Reactions & Deflections 1.43 0.67 0.09 1.02 0.48 0.07Shear @ Left k Shear @ Right k 1.53 0.41 0.00 1.08 0.29 0.00 Reactions... DL @ Left k -1.43 2.20 0.32 -1.02 1.56 0.23 LL @ Left k 0.00 0.00 0.00 0.00 0.00 0.00 Total @ Left DL @ Right LL @ Right Total @ Right k -1.43 2.20 0.32 -1.02 1.56 0.23 k 2.20 0.32 0.00 1.56 0.23 0.00 k 0.00 0.00 0.00 0.00 0.00 0.00 k 2.20 0.32 0.00 1.56 0.23 0.00 Max. Deflection in 0.002 -0.205 0.068 0.001 -0.146 0.048 @ X =ft 1.74 19.83 3.00 1.74 19.83 3.00 Span/Deflection Ratio 19,739.9 2,047.1 1,055.9 27,815.3 2,884.5 1,487.9 Query Values 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Locationft Shear k 1.43 0.67 0.09 1.02 0.48 0.07 0.00 0.00 Moment 0.00 -4.44 0.14 0.00 -3.15 0.10 0.00 0.00k-ft 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000Max. Deflection in Alternate Concrete Slender Wall Design (ACI 318-11 Sect 11.8) Job Name = Job Number = 2180307.20 Wall Type =1 Wall Description = 35 38 7.25 0.75 6.5 4.00 D = Dead Load 5000 S = Snow Load (2) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 10'' o.c. H = Soil Load L / 1061 E = Seismic Load (Ultimate)82% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)0 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)6 Dead - D (plf)408.051 D =204 D =102 Snow - S (plf)850.10625 S =425 S =213 Roof Live - Lr (plf)408.051 Lr =204 Lr =102 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)100 -4400 E =-2150 Wind - W (lb-ft/ft)100 -3200 W =-1550 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)30.9 E =4735 Wind - W (psf)21.9 W =3354 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)2266 Dead - D (lb-ft/ft)102 Snow - S (plf)850 Snow - S (lb-ft/ft)213 Roof Live - Lr (plf)408 Roof Live - Lr (lb-ft/ft)102 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)2585 Wind - W (lb-ft/ft)1804 Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) Blank Panel Tall DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK 4.80 Reinforcement Max Deflection % of Flexural Capacity The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 11.8.2 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB Wall Parameters Wall Height Between Supports (ft)35 (Not including parapet) Parapet Height (ft)3 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)38 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)7.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)6.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?2 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)10 OK As per foot (in2/ft)0.37 (This is the area of tension steel only) Total As in Pier (in2)0.37 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)1.20 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.5 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)4.3 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0085 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.18 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.17 OK r 0.0071 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)78 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)420 = Wall Ht * 12 b1 0.8 Ig (in4/ft)275 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)3.25 = Struc Thk / 2 Mcr (lb-in)44813 = fr * Ig / yt l c / 150 (in)2.8 OK Job Name =IRG Greenline Job Number =2180307.2 Wall Type =1 Wall Description =Blank Panel Tall Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. *ASCE 7-10 IBC-2015 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft)3173 3144 4079 4079 3144 3701 2039 1653 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)1714 2744 5549 16373 24390 34488 22748 31918 Pu / Ag (psi)41 40 52 52 40 47 26 21 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 0.41 0.41 0.42 0.42 0.41 0.41 0.39 0.39 a (in) =(Ase*fy) / (0.85*fc*lw)0.48 0.48 0.49 0.49 0.48 0.49 0.46 0.46 CU = C ULTIMATE = a /b1 0.60 0.60 0.62 0.62 0.60 0.61 0.58 0.57 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 41.32 41.30 42.15 42.15 41.30 41.81 40.27 39.90 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =3213 5108 13478 39764 45404 74661 32867 42659 Mn (lb-in) = Ase * fy * (d - a/2) 99696 99614 102311 102311 99614 101221 96416 95294 Cu / d 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)89726 89653 92080 92080 89653 91099 86775 85764 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 4%6%15%43%51%82%38%50%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Job Number =2E+06 Wall Type =1 Wall Description =Blank Panel Tall D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft)3116 2266 2266 2691 3116 3116 Applied Moment at Mid Ht = Msa (lb-in/ft)3774 14212 22941 15487 10268 25492 Ase (in2) = (Ps + As*fy) / fy 0.42 0.41 0.41 0.41 0.42 0.42 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.273 0.273 0.273 0.273 0.273 0.273 CE = C ELASTIC = k * d 1.18 1.18 1.18 1.18 1.18 1.18 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 36.24 35.24 35.24 35.74 36.24 36.24 M1 = Msa (lb-in)3774 14212 22941 15487 10268 25492 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 275 275 275 275 275 275 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))3980 14767 23838 16211 10829 26882 Ie2 (in4)275 275 275 275 275 275 M3 (lb-in)3980 14767 23838 16211 10829 26882 Ie3 (in4)275 275 275 275 275 275 M4 (lb-in)3980 14767 23838 16211 10829 26882 Ie4 (in4)275 275 275 275 275 275 M5 (lb-in)3980 14767 23838 16211 10829 26882 Ie5 (in4)275 275 275 275 275 275 M6 (lb-in)3980 14767 23838 16211 10829 26882 Ie6 (in4)275 275 275 275 275 275 M7 (lb-in)3980 14767 23838 16211 10829 26882 Ie7 (in4)275 275 275 275 275 275 l c / 150 (in)2.8 2.8 2.8 2.8 2.8 2.8 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.07 0.25 0.40 0.27 0.18 E+S is N/A OK OK OK OK OK OK OKA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7EA=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WU=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5* Job Name = Job Number = Wall Type = Wall Description = Wall Ht =35 ft Wall Weight at Mid Height b =3.333 ft Wt of Concrete=150 pcf c =7 ft Wall Thickness=7.25 in. e =4.00 ft Concentric Load=774 plf d =28 ft Seismic Fp=.4Sd*=0.3412 Wp a = 1.6665 ft a = b/2 Roof Weight Joist Span=68 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =12 psf Live Floor=0 psf eccentricity 6 inch equiv DL =577.983 plf equiv SL =1204.1313 plf c equiv Lr =577.983 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =30.9 psf P wind equiv =31.0 psf P seismic equiv =42.8 psf Equivalent Wind and Seismic Load IRG Greenline 2180307.2 2 Man Door Tall Panel Page 1 Description Panel 2 Equivalent Moments Multi-Span Steel BeamRev: 580010 User: KW-0602298, Ver 5.8.0, 15-Jun-2007 (c)1983-2007 ENERCALC Engineering Software 2180307_irg.ecw:Calculations Scope : Title :Job # Description : Dsgnr:Date:11:02AM, 8 AUG 18 General Information Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Fy - Yield Stress Spans Considered Continuous Over Supports 36.00 ksi Load Duration Factor 1.00 Span Information SeismicDescription Wind wind wind Span ft 3.00 35.00 3.00 3.00 35.00 3.00 Steel Section W8X24 W8X24 W8X24 W8X24 W8X24 W8X24 Pin-Pin Pin-Pin Pin-Free Pin-Pin Pin-Pin Pin-Free 0.00ft 0.00 0.00 0.00 0.00 0.00Unbraced Length End Fixity Loads Live Load Used This Span ?Yes Yes Yes Yes Yes Yes 0.043 0.043 -0.043 0.031 0.031 -0.031Dead Load k/ft Live Load k/ft Results 0.00 3.99 0.00 0.00 2.87 0.00Mmax @ Cntr k-ft @ X =ft 0.00 21.70 0.00 0.00 21.70 0.00 Max @ Left End 0.00 -6.16 0.19 0.00 -4.44 0.14k-ft Max @ Right End -6.16 0.19 0.00 -4.44 0.14 0.00k-ft fb : Actual 3,542.6 3,542.6 111.3 2,554.0 2,554.0 80.3 Fb : Allowable psi 23,760.0 23,760.0 23,760.0 23,760.0 23,760.0 23,760.0 Bending OK Bending OK Bending OK 480.7fv : Actual 1,089.6 47.9 785.5 66.4 346.6 14,400.0 psi 14,400.0 14,400.0Fv : Allowable 14,400.0 14,400.0 14,400.0psi Bending OKBending OK Bending OK psi Reactions & Deflections 1.99 0.93 0.13 1.43 0.67 0.09Shear @ Left k Shear @ Right k 2.12 0.57 0.00 1.53 0.41 0.00 Reactions... DL @ Left k -1.99 3.05 0.44 -1.43 2.20 0.32 LL @ Left k 0.00 0.00 0.00 0.00 0.00 0.00 Total @ Left DL @ Right LL @ Right Total @ Right k -1.99 3.05 0.44 -1.43 2.20 0.32 k 3.05 0.44 0.00 2.20 0.32 0.00 k 0.00 0.00 0.00 0.00 0.00 0.00 k 3.05 0.44 0.00 2.20 0.32 0.00 Max. Deflection in 0.003 -0.285 0.095 0.002 -0.205 0.068 @ X =ft 1.74 19.83 3.00 1.74 19.83 3.00 Span/Deflection Ratio 14,231.1 1,475.8 761.3 19,739.9 2,047.1 1,055.9 Query Values 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Locationft Shear k 1.99 0.93 0.13 1.43 0.67 0.09 0.00 0.00 Moment 0.00 -6.16 0.19 0.00 -4.44 0.14 0.00 0.00k-ft 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000Max. Deflection in Alternate Concrete Slender Wall Design (ACI 318-11 Sect 11.8) Job Name = Job Number = 2180307.20 Wall Type =2 Wall Description = 35 38 7.25 0.75 6.5 4.00 D = Dead Load 5000 S = Snow Load (2) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 6'' o.c. H = Soil Load L / 759 E = Seismic Load (Ultimate)74% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)774 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)6 Dead - D (plf)577.983 D =289 D =144 Snow - S (plf) 1204.13125 S =602 S =301 Roof Live - Lr (plf)577.983 Lr =289 Lr =144 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)200 -6200 E =-3000 Wind - W (lb-ft/ft)100 -4400 W =-2150 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)42.8 E =6553 Wind - W (psf)31.0 W =4751 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)3210 Dead - D (lb-ft/ft)144 Snow - S (plf)1204 Snow - S (lb-ft/ft)301 Roof Live - Lr (plf)578 Roof Live - Lr (lb-ft/ft)144 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)3553 Wind - W (lb-ft/ft)2601 Reinforcement Max Deflection % of Flexural Capacity 8.00 Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) Man Door Tall Panel DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 11.8.2 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB Wall Parameters Wall Height Between Supports (ft)35 (Not including parapet) Parapet Height (ft)3 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)38 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)7.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)6.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?2 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)6 OK As per foot (in2/ft)0.61 (This is the area of tension steel only) Total As in Pier (in2)0.61 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)2.00 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.5 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)4.3 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0141 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.18 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.17 OK r 0.0119 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)78 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)420 = Wall Ht * 12 b1 0.8 Ig (in4/ft)275 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)3.25 = Struc Thk / 2 Mcr (lb-in)44813 = fr * Ig / yt l c / 150 (in)2.8 OK Job Name =IRG Greenline Job Number =2180307.2 Wall Type =2 Wall Description =Man Door Tall Panel Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. *ASCE 7-10 IBC-2015 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft)4494 4454 5778 5778 4454 5242 2889 2341 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)2428 3887 7861 23464 35094 47539 32767 43898 Pu / Ag (psi)58 57 74 74 57 67 37 30 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 0.67 0.67 0.69 0.69 0.67 0.68 0.65 0.64 a (in) =(Ase*fy) / (0.85*fc*lw)0.79 0.79 0.81 0.81 0.79 0.80 0.76 0.76 CU = C ULTIMATE = a /b1 0.99 0.98 1.01 1.01 0.98 1.00 0.96 0.95 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 57.19 57.17 57.99 57.99 57.17 57.66 56.18 55.83 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =4647 7383 19937 59514 66662 106272 47666 58917 Mn (lb-in) = Ase * fy * (d - a/2) 157527 157421 160929 160929 157421 159512 153250 151784 Cu / d 0.23 0.23 0.23 0.23 0.23 0.23 0.22 0.22 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)141774 141679 144837 144837 141679 143560 137925 136606 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 3%5%14%41%47%74%35%43%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Job Number =2E+06 Wall Type =2 Wall Description =Man Door Tall Panel D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft)4414 3210 3210 3812 4414 4414 Applied Moment at Mid Ht = Msa (lb-in/ft)5346 20458 31578 22264 14708 35190 Ase (in2) = (Ps + As*fy) / fy 0.69 0.67 0.67 0.68 0.69 0.69 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.336 0.336 0.336 0.336 0.336 0.336 CE = C ELASTIC = k * d 1.45 1.45 1.45 1.45 1.45 1.45 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 52.70 51.52 51.52 52.11 52.70 52.70 M1 = Msa (lb-in)5346 20458 31578 22264 14708 35190 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 275 275 275 275 275 275 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))5769 21609 33355 23768 15871 37972 Ie2 (in4)275 275 275 275 275 275 M3 (lb-in)5769 21609 33355 23768 15871 37972 Ie3 (in4)275 275 275 275 275 275 M4 (lb-in)5769 21609 33355 23768 15871 37972 Ie4 (in4)275 275 275 275 275 275 M5 (lb-in)5769 21609 33355 23768 15871 37972 Ie5 (in4)275 275 275 275 275 275 M6 (lb-in)5769 21609 33355 23768 15871 37972 Ie6 (in4)275 275 275 275 275 275 M7 (lb-in)5769 21609 33355 23768 15871 37972 Ie7 (in4)275 275 275 275 275 275 l c / 150 (in)2.8 2.8 2.8 2.8 2.8 2.8 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.10 0.36 0.55 0.39 0.26 E+S is N/A OK OK OK OK OK OK OK Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5*U=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 A=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7E Job Name = Job Number = Wall Type = Wall Description = Wall Ht =33 ft Wall Weight at Mid Height b =0.001 ft Wt of Concrete=150 pcf c =4 ft Wall Thickness=7.25 in. e =1.00 ft Concentric Load=1 plf d =29 ft Seismic Fp=.4Sd*=0.3412 Wp a = 0.0005 ft a = b/2 Roof Weight Joist Span=68 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =12 psf Live Floor=0 psf eccentricity 6 inch equiv DL =408.204 plf equiv SL =850.425 plf c equiv Lr =408.204 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =30.9 psf P wind equiv =21.9 psf P seismic equiv =30.9 psf Equivalent Wind and Seismic Load IRG Greenline 2180307.2 4 Blank Panel Tall Page 1 Description Panel 4 Equivalent Moments Multi-Span Steel BeamRev: 580010 User: KW-0602298, Ver 5.8.0, 15-Jun-2007 (c)1983-2007 ENERCALC Engineering Software 2180307_irg.ecw:Calculations Scope : Title :Job # Description : Dsgnr:Date:11:02AM, 8 AUG 18 General Information Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Fy - Yield Stress Spans Considered Continuous Over Supports 36.00 ksi Load Duration Factor 1.00 Span Information SeismicDescription Wind wind wind Span ft 3.00 33.00 5.00 3.00 33.00 5.00 Steel Section W8X24 W8X24 W8X24 W8X24 W8X24 W8X24 Pin-Pin Pin-Pin Pin-Free Pin-Pin Pin-Pin Pin-Free 0.00ft 0.00 0.00 0.00 0.00 0.00Unbraced Length End Fixity Loads Live Load Used This Span ?Yes Yes Yes Yes Yes Yes 0.031 0.031 -0.031 0.022 0.022 -0.022Dead Load k/ft Live Load k/ft Results 0.00 2.68 0.00 0.00 1.90 0.00Mmax @ Cntr k-ft @ X =ft 0.00 20.90 0.00 0.00 20.90 0.00 Max @ Left End 0.00 -4.05 0.39 0.00 -2.87 0.27k-ft Max @ Right End -4.05 0.39 0.00 -2.87 0.27 0.00k-ft fb : Actual 2,329.4 2,329.4 222.9 1,653.1 1,653.1 158.2 Fb : Allowable psi 23,760.0 23,760.0 23,760.0 23,760.0 23,760.0 23,760.0 Bending OK Bending OK Bending OK 332.5fv : Actual 718.6 56.6 510.0 79.8 235.9 14,400.0 psi 14,400.0 14,400.0Fv : Allowable 14,400.0 14,400.0 14,400.0psi Bending OKBending OK Bending OK psi Reactions & Deflections 1.30 0.65 0.15 0.92 0.46 0.11Shear @ Left k Shear @ Right k 1.40 0.38 0.00 0.99 0.27 0.00 Reactions... DL @ Left k -1.30 2.04 0.22 -0.92 1.45 0.16 LL @ Left k 0.00 0.00 0.00 0.00 0.00 0.00 Total @ Left DL @ Right LL @ Right Total @ Right k -1.30 2.04 0.22 -0.92 1.45 0.16 k 2.04 0.22 0.00 1.45 0.16 0.00 k 0.00 0.00 0.00 0.00 0.00 0.00 k 2.04 0.22 0.00 1.45 0.16 0.00 Max. Deflection in 0.002 -0.171 0.104 0.001 -0.121 0.074 @ X =ft 1.74 18.92 5.00 1.74 18.92 5.00 Span/Deflection Ratio 21,669.4 2,319.4 1,152.8 30,534.2 3,268.3 1,624.3 Query Values 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Locationft Shear k 1.30 0.65 0.15 0.92 0.46 0.11 0.00 0.00 Moment 0.00 -4.05 0.39 0.00 -2.87 0.27 0.00 0.00k-ft 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000Max. Deflection in Alternate Concrete Slender Wall Design (ACI 318-11 Sect 11.8) Job Name = Job Number = 2180307.20 Wall Type =4 Wall Description = 33 38 7.25 0.75 6.5 1.00 D = Dead Load 5000 S = Snow Load (2) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 10'' o.c. H = Soil Load L / 1206 E = Seismic Load (Ultimate)70% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)1 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)6 Dead - D (plf)408.204 D =204 D =102 Snow - S (plf)850.425 S =425 S =213 Roof Live - Lr (plf)408.204 Lr =204 Lr =102 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)400 -4000 E =-1800 Wind - W (lb-ft/ft)300 -2900 W =-1300 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)30.9 E =4211 Wind - W (psf)21.9 W =2983 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)2358 Dead - D (lb-ft/ft)102 Snow - S (plf)850 Snow - S (lb-ft/ft)213 Roof Live - Lr (plf)408 Roof Live - Lr (lb-ft/ft)102 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)2411 Wind - W (lb-ft/ft)1683 Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) Blank Panel Tall DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK 1.20 Reinforcement Max Deflection % of Flexural Capacity The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 11.8.2 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB Wall Parameters Wall Height Between Supports (ft)33 (Not including parapet) Parapet Height (ft)5 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)38 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)7.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)6.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?2 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)10 OK As per foot (in2/ft)0.37 (This is the area of tension steel only) Total As in Pier (in2)0.37 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)1.20 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.5 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)4.3 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0085 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.18 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.17 OK r 0.0071 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)78 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)396 = Wall Ht * 12 b1 0.8 Ig (in4/ft)275 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)3.25 = Struc Thk / 2 Mcr (lb-in)44813 = fr * Ig / yt l c / 150 (in)2.64 OK Job Name =IRG Greenline Job Number =2180307.2 Wall Type =4 Wall Description =Blank Panel Tall Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. *ASCE 7-10 IBC-2015 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft)3301 3254 4190 4190 3254 3827 2122 1720 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)1714 2745 5552 15647 22937 32399 21294 29828 Pu / Ag (psi)42 42 54 54 42 49 27 22 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 0.41 0.41 0.42 0.42 0.41 0.42 0.39 0.39 a (in) =(Ase*fy) / (0.85*fc*lw)0.48 0.48 0.50 0.50 0.48 0.49 0.46 0.46 CU = C ULTIMATE = a /b1 0.60 0.60 0.62 0.62 0.60 0.61 0.58 0.57 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 41.44 41.40 42.25 42.25 41.40 41.92 40.35 39.97 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =3010 4772 11960 33710 39874 63931 29748 38864 Mn (lb-in) = Ase * fy * (d - a/2) 100066 99932 102628 102628 99932 101583 96655 95488 Cu / d 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)90059 89939 92365 92365 89939 91424 86990 85939 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 3%5%13%36%44%70%34%45%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Job Number =2E+06 Wall Type =4 Wall Description =Blank Panel Tall D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft)3208 2358 2358 2783 3208 3208 Applied Moment at Mid Ht = Msa (lb-in/ft)3776 13340 21479 14615 9833 24030 Ase (in2) = (Ps + As*fy) / fy 0.42 0.41 0.41 0.41 0.42 0.42 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.273 0.273 0.273 0.273 0.273 0.273 CE = C ELASTIC = k * d 1.18 1.18 1.18 1.18 1.18 1.18 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 36.35 35.34 35.34 35.85 36.35 36.35 M1 = Msa (lb-in)3776 13340 21479 14615 9833 24030 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 275 275 275 275 275 275 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))3964 13820 22253 15241 10322 25224 Ie2 (in4)275 275 275 275 275 275 M3 (lb-in)3964 13820 22253 15241 10322 25224 Ie3 (in4)275 275 275 275 275 275 M4 (lb-in)3964 13820 22253 15241 10322 25224 Ie4 (in4)275 275 275 275 275 275 M5 (lb-in)3964 13820 22253 15241 10322 25224 Ie5 (in4)275 275 275 275 275 275 M6 (lb-in)3964 13820 22253 15241 10322 25224 Ie6 (in4)275 275 275 275 275 275 M7 (lb-in)3964 13820 22253 15241 10322 25224 Ie7 (in4)275 275 275 275 275 275 l c / 150 (in)2.64 2.64 2.64 2.64 2.64 2.64 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.06 0.20 0.33 0.22 0.15 E+S is N/A OK OK OK OK OK OK OKA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7EA=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WU=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5* Job Name = Job Number = Wall Type = Wall Description = Wall Ht =29.75 ft Wall Weight at Mid Height b =12 ft Wt of Concrete=150 pcf c =14 ft Wall Thickness=7.25 in. e =2.25 ft Concentric Load=3595 plf d =15.75 ft Seismic Fp=.4Sd*=0.3412 Wp a =6 ft a = b/2 Roof Weight Joist Span=60 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =12 psf Live Floor=0 psf eccentricity 2 inch equiv DL =1320 plf equiv SL =2750 plf c equiv Lr =1320 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =30.9 psf P wind equiv =80.3 psf P seismic equiv =80.9 psf Equivalent Wind and Seismic Load IRG Greenline 2180307.2 6a Drive In - Side Pier Page 1 Description Panel 6a Equivalent Moments Multi-Span Steel BeamRev: 580010 User: KW-0602298, Ver 5.8.0, 15-Jun-2007 (c)1983-2007 ENERCALC Engineering Software 2180307_irg.ecw:Calculations Scope : Title :Job # Description : Dsgnr:Date:11:02AM, 8 AUG 18 General Information Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Fy - Yield Stress Spans Considered Continuous Over Supports 36.00 ksi Load Duration Factor 1.00 Span Information SeismicDescription Wind wind wind Span ft 4.75 29.75 4.75 29.50 5.00 Steel Section W8X24 W8X24 W8X24 W8X24 W8X24 Pin-Pin Pin-Pin Pin-Pin Pin-Pin Pin-Free 0.00ft 0.00 0.00 0.00 0.00Unbraced Length End Fixity Loads Live Load Used This Span ?Yes Yes Yes Yes Yes 0.081 0.081 0.081 0.081 -0.022Dead Load k/ft Live Load k/ft Results 0.00 5.50 0.00 5.53 0.00Mmax @ Cntr k-ft @ X =ft 0.00 18.05 0.00 18.09 0.00 Max @ Left End 0.00 -7.76 0.00 -7.74 0.27k-ft Max @ Right End -7.76 0.00 -7.74 0.27 0.00k-ft fb : Actual 4,464.0 4,464.0 4,452.7 4,452.7 158.2 Fb : Allowable psi 23,760.0 23,760.0 23,760.0 23,760.0 23,760.0 Bending OK Bending OK Bending OK 754.4fv : Actual 939.8 56.6 937.7 754.8 14,400.0 psi 14,400.0 14,400.0Fv : Allowable 14,400.0 14,400.0psi Bending OK Bending OK psi Reactions & Deflections 1.44 1.47 1.44 1.47 0.11Shear @ Left k Shear @ Right k 1.83 0.94 1.82 0.92 0.00 Reactions... DL @ Left k -1.44 3.29 -1.44 3.29 0.81 LL @ Left k 0.00 0.00 0.00 0.00 0.00 Total @ Left DL @ Right LL @ Right Total @ Right k -1.44 3.29 -1.44 3.29 0.81 k 3.29 0.94 3.29 0.81 0.00 k 0.00 0.00 0.00 0.00 0.00 k 3.29 0.94 3.29 0.81 0.00 Max. Deflection in 0.008 -0.292 0.008 -0.290 0.188 @ X =ft 2.75 16.66 2.75 16.52 5.00 Span/Deflection Ratio 7,387.1 1,221.1 7,406.6 1,222.3 638.7 Query Values 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Locationft Shear k 1.44 1.47 0.00 1.44 1.47 0.11 0.00 0.00 Moment 0.00 -7.76 0.00 0.00 -7.74 0.27 0.00 0.00k-ft 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000Max. Deflection in Alternate Concrete Slender Wall Design (ACI 318-11 Sect 11.8) Job Name = Job Number = 2180307.20 Wall Type =6a Wall Description = 29.75 29.75 7.25 0.75 6.5 2.25 D = Dead Load 5000 S = Snow Load (2) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 4'' o.c. H = Soil Load L / 538 E = Seismic Load (Ultimate)79% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)3595 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)2 Dead - D (plf)1320 D =220 D =110 Snow - S (plf)2750 S =458 S =229 Roof Live - Lr (plf)1320 Lr =220 Lr =110 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)0 -7800 E =-3900 Wind - W (lb-ft/ft)0 -7800 W =-3900 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)80.9 E =8950 Wind - W (psf)80.3 W =8884 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)6263 Dead - D (lb-ft/ft)110 Snow - S (plf)2750 Snow - S (lb-ft/ft)229 Roof Live - Lr (plf)1320 Roof Live - Lr (lb-ft/ft)110 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)5050 Wind - W (lb-ft/ft)4984 Reinforcement Max Deflection % of Flexural Capacity 7.00 Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) Drive In - Side Pier DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 11.8.2 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB Wall Parameters Wall Height Between Supports (ft)29.75 (Not including parapet) Parapet Height (ft)0 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)29.75 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)7.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)6.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?2 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)3.857 OK As per foot (in2/ft)0.95 (This is the area of tension steel only) Total As in Pier (in2)0.95 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)3.11 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.5 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)4.3 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0219 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.18 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.17 OK r 0.0184 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)78 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)357 = Wall Ht * 12 b1 0.8 Ig (in4/ft)275 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)3.25 = Struc Thk / 2 Mcr (lb-in)44813 = fr * Ig / yt l c / 150 (in)2.38 OK Job Name =IRG Greenline Job Number =2180307.2 Wall Type =6a Wall Description =Drive In - Side Pier Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. *ASCE 7-10 IBC-2015 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft)8768 8890 11915 11915 8890 10509 5637 4568 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)1848 2959 5984 35887 62765 64338 60994 61567 Pu / Ag (psi)112 114 153 153 114 135 72 59 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 1.06 1.07 1.10 1.10 1.07 1.09 1.03 1.01 a (in) =(Ase*fy) / (0.85*fc*lw)1.25 1.25 1.30 1.30 1.25 1.28 1.21 1.19 CU = C ULTIMATE = a /b1 1.57 1.57 1.62 1.62 1.57 1.60 1.51 1.49 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 73.15 73.20 74.56 74.56 73.20 73.93 71.74 71.26 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =3902 6341 20071 120370 134507 171243 93127 85691 Mn (lb-in) = Ase * fy * (d - a/2) 235472 235754 242675 242675 235754 239470 228196 225688 Cu / d 0.36 0.36 0.38 0.38 0.36 0.37 0.35 0.35 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.89 0.89 0.90 0.90 0.90 0.90 fMn (lb-in)211925 212179 216941 216941 212179 215523 205376 203120 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 2%3%9%55%63%79%45%42%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Job Number =2E+06 Wall Type =6a Wall Description =Drive In - Side Pier D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft)9013 6263 6263 7638 9013 9013 Applied Moment at Mid Ht = Msa (lb-in/ft)4070 37203 43743 38578 22012 46493 Ase (in2) = (Ps + As*fy) / fy 1.10 1.06 1.06 1.08 1.10 1.10 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.399 0.399 0.399 0.399 0.399 0.399 CE = C ELASTIC = k * d 1.72 1.72 1.72 1.72 1.72 1.72 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 73.77 71.55 71.55 72.66 73.77 73.77 M1 = Msa (lb-in)4070 37203 43743 38578 22012 46493 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 275 275 275 275 275 254 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))4563 40225 47295 42469 24680 52656 Ie2 (in4)275 275 244 275 275 198 M3 (lb-in)4563 40225 47777 42469 24680 54714 Ie3 (in4)275 275 239 275 275 184 M4 (lb-in)4563 40225 47873 42469 24680 55430 Ie4 (in4)275 275 238 275 275 180 M5 (lb-in)4563 40225 47892 42469 24680 55681 Ie5 (in4)275 275 238 275 275 178 M6 (lb-in)4563 40225 47895 42469 24680 55769 Ie6 (in4)275 275 238 275 275 178 M7 (lb-in)4563 40225 47896 42469 24680 55800 Ie7 (in4)275 275 238 275 275 178 l c / 150 (in)2.38 2.38 2.38 2.38 2.38 2.38 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.05 0.48 0.66 0.51 0.30 E+S is N/A OK OK OK OK OK OK OK Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5*U=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 A=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7E Job Name = Job Number = Wall Type = Wall Description = Wall Ht =29.75 ft Wall Weight at Mid Height b =15.4 ft Wt of Concrete=150 pcf c =10 ft Wall Thickness=7.25 in. e =5.67 ft Concentric Load=1832 plf d =19.75 ft Seismic Fp=.4Sd*=0.3412 Wp a =7.7 ft a = b/2 Roof Weight Joist Span=60 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =12 psf Live Floor=0 psf eccentricity 2 inch equiv DL =849.1477 plf equiv SL =1769.0577 plf c equiv Lr =849.1477 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =30.9 psf P wind equiv =51.7 psf P seismic equiv =64.0 psf Equivalent Wind and Seismic Load IRG Greenline 2180307.2 6b Drive In / Man Page 1 Description Panel 6b Equivalent Moments Multi-Span Steel BeamRev: 580010 User: KW-0602298, Ver 5.8.0, 15-Jun-2007 (c)1983-2007 ENERCALC Engineering Software 2180307_irg.ecw:Calculations Scope : Title :Job # Description : Dsgnr:Date:11:02AM, 8 AUG 18 General Information Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Fy - Yield Stress Spans Considered Continuous Over Supports 36.00 ksi Load Duration Factor 1.00 Span Information SeismicDescription Wind wind wind Span ft 4.75 29.75 4.75 29.50 5.00 Steel Section W8X24 W8X24 W8X24 W8X24 W8X24 Pin-Pin Pin-Pin Pin-Pin Pin-Pin Pin-Free 0.00ft 0.00 0.00 0.00 0.00Unbraced Length End Fixity Loads Live Load Used This Span ?Yes Yes Yes Yes Yes 0.064 0.064 0.052 0.052 -0.022Dead Load k/ft Live Load k/ft Results 0.00 4.35 0.00 3.60 0.00Mmax @ Cntr k-ft @ X =ft 0.00 18.05 0.00 18.29 0.00 Max @ Left End 0.00 -6.13 0.00 -5.01 0.27k-ft Max @ Right End -6.13 0.00 -5.01 0.27 0.00k-ft fb : Actual 3,527.1 3,527.1 2,882.9 2,882.9 158.2 Fb : Allowable psi 23,760.0 23,760.0 23,760.0 23,760.0 23,760.0 Bending OK Bending OK Bending OK 596.1fv : Actual 742.5 56.6 606.5 487.0 14,400.0 psi 14,400.0 14,400.0Fv : Allowable 14,400.0 14,400.0psi Bending OK Bending OK psi Reactions & Deflections 1.14 1.16 0.93 0.95 0.11Shear @ Left k Shear @ Right k 1.44 0.75 1.18 0.59 0.00 Reactions... DL @ Left k -1.14 2.60 -0.93 2.12 0.48 LL @ Left k 0.00 0.00 0.00 0.00 0.00 Total @ Left DL @ Right LL @ Right Total @ Right k -1.14 2.60 -0.93 2.12 0.48 k 2.60 0.75 2.12 0.48 0.00 k 0.00 0.00 0.00 0.00 0.00 k 2.60 0.75 2.12 0.48 0.00 Max. Deflection in 0.006 -0.231 0.005 -0.188 0.122 @ X =ft 2.75 16.66 2.75 16.72 5.00 Span/Deflection Ratio 9,349.3 1,545.4 11,434.9 1,879.7 985.9 Query Values 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Locationft Shear k 1.14 1.16 0.00 0.93 0.95 0.11 0.00 0.00 Moment 0.00 -6.13 0.00 0.00 -5.01 0.27 0.00 0.00k-ft 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000Max. Deflection in Alternate Concrete Slender Wall Design (ACI 318-11 Sect 11.8) Job Name = Job Number = 2180307.20 Wall Type =6b Wall Description = 29.75 29.75 7.25 0.75 6.5 5.67 D = Dead Load 5000 S = Snow Load (2) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 7'' o.c. H = Soil Load L / 817 E = Seismic Load (Ultimate)83% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)1832 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)2 Dead - D (plf) 849.1476972 D =142 D =71 Snow - S (plf) 1769.057702 S =295 S =147 Roof Live - Lr (plf) 849.1476972 Lr =142 Lr =71 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)0 -6100 E =-3050 Wind - W (lb-ft/ft)0 -5000 W =-2500 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)64.0 E =7078 Wind - W (psf)51.7 W =5715 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)4029 Dead - D (lb-ft/ft)71 Snow - S (plf)1769 Snow - S (lb-ft/ft)147 Roof Live - Lr (plf)849 Roof Live - Lr (lb-ft/ft)71 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)4028 Wind - W (lb-ft/ft)3215 Reinforcement Max Deflection % of Flexural Capacity 10.00 Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) Drive In / Man DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 11.8.2 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB Wall Parameters Wall Height Between Supports (ft)29.75 (Not including parapet) Parapet Height (ft)0 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)29.75 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)7.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)6.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?2 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)6.8 OK As per foot (in2/ft)0.54 (This is the area of tension steel only) Total As in Pier (in2)0.54 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)1.76 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.5 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)4.3 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0124 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.18 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.17 OK r 0.0105 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)78 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)357 = Wall Ht * 12 b1 0.8 Ig (in4/ft)275 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)3.25 = Struc Thk / 2 Mcr (lb-in)44813 = fr * Ig / yt l c / 150 (in)2.38 OK Job Name =IRG Greenline Job Number =2180307.2 Wall Type =6b Wall Description =Drive In / Man Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. *ASCE 7-10 IBC-2015 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft)5640 5719 7665 7665 5719 6760 3626 2939 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)1189 1904 3849 23139 40482 50738 39343 48956 Pu / Ag (psi)72 73 98 98 73 87 46 38 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 0.61 0.61 0.64 0.64 0.61 0.63 0.59 0.58 a (in) =(Ase*fy) / (0.85*fc*lw)0.72 0.72 0.75 0.75 0.72 0.74 0.69 0.68 CU = C ULTIMATE = a /b1 0.90 0.90 0.94 0.94 0.90 0.92 0.86 0.85 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 54.21 54.26 55.55 55.55 54.26 54.96 52.82 52.33 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =2189 3544 9770 58724 75372 110356 56324 64980 Mn (lb-in) = Ase * fy * (d - a/2) 145190 145403 150648 150648 145403 148215 139714 137835 Cu / d 0.21 0.21 0.22 0.22 0.21 0.21 0.20 0.20 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)130671 130863 135584 135584 130863 133393 125743 124052 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 2%3%7%43%58%83%45%52%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Job Number =2E+06 Wall Type =6b Wall Description =Drive In / Man D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft)5798 4029 4029 4913 5798 5798 Applied Moment at Mid Ht = Msa (lb-in/ft)2618 23996 34685 24881 14192 36454 Ase (in2) = (Ps + As*fy) / fy 0.64 0.61 0.61 0.62 0.64 0.64 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.320 0.320 0.320 0.320 0.320 0.320 CE = C ELASTIC = k * d 1.38 1.38 1.38 1.38 1.38 1.38 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 49.99 48.17 48.17 49.08 49.99 49.99 M1 = Msa (lb-in)2618 23996 34685 24881 14192 36454 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 275 275 275 275 275 275 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))2814 25215 36446 26439 15253 39178 Ie2 (in4)275 275 275 275 275 275 M3 (lb-in)2814 25215 36446 26439 15253 39178 Ie3 (in4)275 275 275 275 275 275 M4 (lb-in)2814 25215 36446 26439 15253 39178 Ie4 (in4)275 275 275 275 275 275 M5 (lb-in)2814 25215 36446 26439 15253 39178 Ie5 (in4)275 275 275 275 275 275 M6 (lb-in)2814 25215 36446 26439 15253 39178 Ie6 (in4)275 275 275 275 275 275 M7 (lb-in)2814 25215 36446 26439 15253 39178 Ie7 (in4)275 275 275 275 275 275 l c / 150 (in)2.38 2.38 2.38 2.38 2.38 2.38 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.03 0.30 0.44 0.32 0.18 E+S is N/A OK OK OK OK OK OK OK Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5*U=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 A=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7E Job Name = Job Number = Wall Type = Wall Description = Wall Ht =29.75 ft Wall Weight at Mid Height b =3.4 ft Wt of Concrete=150 pcf c =7 ft Wall Thickness=7.25 in. e =2.33 ft Concentric Load=982 plf d =22.75 ft Seismic Fp=.4Sd*=0.3412 Wp a =1.7 ft a = b/2 Roof Weight Joist Span=60 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =12 psf Live Floor=0 psf eccentricity 2 inch equiv DL =622.32319 plf equiv SL =1296.5066 plf c equiv Lr =622.32319 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =30.9 psf P wind equiv =37.9 psf P seismic equiv =51.0 psf Equivalent Wind and Seismic Load IRG Greenline 2180307.2 6c Man Door Page 1 Description Panel 6c Equivalent Moments Multi-Span Steel BeamRev: 580010 User: KW-0602298, Ver 5.8.0, 15-Jun-2007 (c)1983-2007 ENERCALC Engineering Software 2180307_irg.ecw:Calculations Scope : Title :Job # Description : Dsgnr:Date:11:02AM, 8 AUG 18 General Information Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Fy - Yield Stress Spans Considered Continuous Over Supports 36.00 ksi Load Duration Factor 1.00 Span Information SeismicDescription Wind wind wind Span ft 4.75 29.75 4.75 29.50 5.00 Steel Section W8X24 W8X24 W8X24 W8X24 W8X24 Pin-Pin Pin-Pin Pin-Pin Pin-Pin Pin-Free 0.00ft 0.00 0.00 0.00 0.00Unbraced Length End Fixity Loads Live Load Used This Span ?Yes Yes Yes Yes Yes 0.051 0.051 0.038 0.038 -0.022Dead Load k/ft Live Load k/ft Results 0.00 3.46 0.00 2.66 0.00Mmax @ Cntr k-ft @ X =ft 0.00 18.05 0.00 18.29 0.00 Max @ Left End 0.00 -4.89 0.00 -3.69 0.27k-ft Max @ Right End -4.89 0.00 -3.69 0.27 0.00k-ft fb : Actual 2,810.6 2,810.6 2,125.1 2,125.1 158.2 Fb : Allowable psi 23,760.0 23,760.0 23,760.0 23,760.0 23,760.0 Bending OK Bending OK Bending OK 475.0fv : Actual 591.7 56.6 446.7 357.7 14,400.0 psi 14,400.0 14,400.0Fv : Allowable 14,400.0 14,400.0psi Bending OK Bending OK psi Reactions & Deflections 0.91 0.92 0.69 0.70 0.11Shear @ Left k Shear @ Right k 1.15 0.59 0.87 0.43 0.00 Reactions... DL @ Left k -0.91 2.07 -0.69 1.56 0.32 LL @ Left k 0.00 0.00 0.00 0.00 0.00 Total @ Left DL @ Right LL @ Right Total @ Right k -0.91 2.07 -0.69 1.56 0.32 k 2.07 0.59 1.56 0.32 0.00 k 0.00 0.00 0.00 0.00 0.00 k 2.07 0.59 1.56 0.32 0.00 Max. Deflection in 0.005 -0.184 0.004 -0.139 0.092 @ X =ft 2.75 16.66 2.75 16.72 5.00 Span/Deflection Ratio 11,732.4 1,939.3 15,506.2 2,539.0 1,309.6 Query Values 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Locationft Shear k 0.91 0.92 0.00 0.69 0.70 0.11 0.00 0.00 Moment 0.00 -4.89 0.00 0.00 -3.69 0.27 0.00 0.00k-ft 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000Max. Deflection in Alternate Concrete Slender Wall Design (ACI 318-11 Sect 11.8) Job Name = Job Number = 2180307.20 Wall Type =6c Wall Description = 29.75 29.75 7.25 0.75 6.5 2.33 D = Dead Load 5000 S = Snow Load (2) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 9'' o.c. H = Soil Load L / 1045 E = Seismic Load (Ultimate)78% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)982 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)2 Dead - D (plf) 622.323189 D =104 D =52 Snow - S (plf) 1296.506644 S =216 S =108 Roof Live - Lr (plf) 622.323189 Lr =104 Lr =52 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)0 -4900 E =-2450 Wind - W (lb-ft/ft)0 -3700 W =-1850 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)51.0 E =5645 Wind - W (psf)37.9 W =4188 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)2953 Dead - D (lb-ft/ft)52 Snow - S (plf)1297 Snow - S (lb-ft/ft)108 Roof Live - Lr (plf)622 Roof Live - Lr (lb-ft/ft)52 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)3195 Wind - W (lb-ft/ft)2338 Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) Man Door DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK 3.00 Reinforcement Max Deflection % of Flexural Capacity The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 11.8.2 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB Wall Parameters Wall Height Between Supports (ft)29.75 (Not including parapet) Parapet Height (ft)0 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)29.75 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)7.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)6.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?2 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)9.333 OK As per foot (in2/ft)0.39 (This is the area of tension steel only) Total As in Pier (in2)0.39 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)1.29 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.5 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)4.3 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0091 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.18 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.17 OK r 0.0076 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)78 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)357 = Wall Ht * 12 b1 0.8 Ig (in4/ft)275 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)3.25 = Struc Thk / 2 Mcr (lb-in)44813 = fr * Ig / yt l c / 150 (in)2.38 OK Job Name =IRG Greenline Job Number =2180307.2 Wall Type =6c Wall Description =Man Door Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. *ASCE 7-10 IBC-2015 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft)4134 4191 5618 5618 4191 4954 2657 2154 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)871 1395 2821 16851 29455 40104 28620 38797 Pu / Ag (psi)53 54 72 72 54 64 34 28 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 0.45 0.45 0.47 0.47 0.45 0.46 0.43 0.42 a (in) =(Ase*fy) / (0.85*fc*lw)0.53 0.53 0.55 0.55 0.53 0.54 0.50 0.50 CU = C ULTIMATE = a /b1 0.66 0.66 0.68 0.68 0.66 0.67 0.63 0.62 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 44.06 44.11 45.34 45.34 44.11 44.77 42.76 42.31 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =1482 2394 6190 36971 50549 78024 39364 49968 Mn (lb-in) = Ase * fy * (d - a/2) 108470 108635 112693 112693 108635 110809 104244 102797 Cu / d 0.15 0.15 0.16 0.16 0.15 0.16 0.15 0.14 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)97623 97771 101424 101424 97771 99728 93820 92517 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 2%2%6%36%52%78%42%54%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Job Number =2E+06 Wall Type =6c Wall Description =Man Door D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft)4249 2953 2953 3601 4249 4249 Applied Moment at Mid Ht = Msa (lb-in/ft)1919 17458 27463 18107 10337 28759 Ase (in2) = (Ps + As*fy) / fy 0.47 0.44 0.44 0.45 0.47 0.47 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.281 0.281 0.281 0.281 0.281 0.281 CE = C ELASTIC = k * d 1.21 1.21 1.21 1.21 1.21 1.21 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 39.31 37.81 37.81 38.56 39.31 39.31 M1 = Msa (lb-in)1919 17458 27463 18107 10337 28759 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 275 275 275 275 275 275 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))2022 18099 28471 18924 10892 30303 Ie2 (in4)275 275 275 275 275 275 M3 (lb-in)2022 18099 28471 18924 10892 30303 Ie3 (in4)275 275 275 275 275 275 M4 (lb-in)2022 18099 28471 18924 10892 30303 Ie4 (in4)275 275 275 275 275 275 M5 (lb-in)2022 18099 28471 18924 10892 30303 Ie5 (in4)275 275 275 275 275 275 M6 (lb-in)2022 18099 28471 18924 10892 30303 Ie6 (in4)275 275 275 275 275 275 M7 (lb-in)2022 18099 28471 18924 10892 30303 Ie7 (in4)275 275 275 275 275 275 l c / 150 (in)2.38 2.38 2.38 2.38 2.38 2.38 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.02 0.22 0.34 0.23 0.13 E+S is N/A OK OK OK OK OK OK OKA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7EA=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WU=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5* Job Name = Job Number = Wall Type = Wall Description = Wall Ht =29.75 ft Wall Weight at Mid Height b =9 ft Wt of Concrete=150 pcf c =10 ft Wall Thickness=7.25 in. e =1.75 ft Concentric Load=3466 plf d =19.75 ft Seismic Fp=.4Sd*=0.3412 Wp a =4.5 ft a = b/2 Roof Weight Joist Span=60 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =12 psf Live Floor=0 psf eccentricity 2 inch equiv DL =1285.7143 plf equiv SL =2678.5714 plf c equiv Lr =1285.7143 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =30.9 psf P wind equiv =78.2 psf P seismic equiv =93.5 psf Equivalent Wind and Seismic Load IRG Greenline 2180307.2 8 Dock Door Page 1 Description Panel 8 Equivalent Moments Multi-Span Steel BeamRev: 580010 User: KW-0602298, Ver 5.8.0, 15-Jun-2007 (c)1983-2007 ENERCALC Engineering Software 2180307_irg.ecw:Calculations Scope : Title :Job # Description : Dsgnr:Date:11:03AM, 8 AUG 18 General Information Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Fy - Yield Stress Spans Considered Continuous Over Supports 36.00 ksi Load Duration Factor 1.00 Span Information SeismicDescription Wind wind wind Span ft 4.75 29.75 4.75 29.50 5.00 Steel Section W8X24 W8X24 W8X24 W8X24 W8X24 Pin-Pin Pin-Pin Pin-Pin Pin-Pin Pin-Free 0.00ft 0.00 0.00 0.00 0.00Unbraced Length End Fixity Loads Live Load Used This Span ?Yes Yes Yes Yes Yes 0.094 0.094 0.078 0.078 -0.022Dead Load k/ft Live Load k/ft Results 0.00 6.38 0.00 5.33 0.00Mmax @ Cntr k-ft @ X =ft 0.00 18.05 0.00 18.09 0.00 Max @ Left End 0.00 -9.00 0.00 -7.46 0.27k-ft Max @ Right End -9.00 0.00 -7.46 0.27 0.00k-ft fb : Actual 5,180.4 5,180.4 4,290.3 4,290.3 158.2 Fb : Allowable psi 23,760.0 23,760.0 23,760.0 23,760.0 23,760.0 Bending OK Bending OK Bending OK 875.5fv : Actual 1,090.6 56.6 903.4 727.1 14,400.0 psi 14,400.0 14,400.0Fv : Allowable 14,400.0 14,400.0psi Bending OK Bending OK psi Reactions & Deflections 1.67 1.70 1.38 1.41 0.11Shear @ Left k Shear @ Right k 2.12 1.10 1.76 0.89 0.00 Reactions... DL @ Left k -1.67 3.82 -1.38 3.17 0.78 LL @ Left k 0.00 0.00 0.00 0.00 0.00 Total @ Left DL @ Right LL @ Right Total @ Right k -1.67 3.82 -1.38 3.17 0.78 k 3.82 1.10 3.17 0.78 0.00 k 0.00 0.00 0.00 0.00 0.00 k 3.82 1.10 3.17 0.78 0.00 Max. Deflection in 0.009 -0.339 0.007 -0.279 0.181 @ X =ft 2.75 16.66 2.75 16.52 5.00 Span/Deflection Ratio 6,365.5 1,052.2 7,686.7 1,268.2 661.9 Query Values 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Locationft Shear k 1.67 1.70 0.00 1.38 1.41 0.11 0.00 0.00 Moment 0.00 -9.00 0.00 0.00 -7.46 0.27 0.00 0.00k-ft 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000Max. Deflection in Alternate Concrete Slender Wall Design (ACI 318-11 Sect 11.8) Job Name = Job Number = 2180307.20 Wall Type =8 Wall Description = 29.75 29.75 7.25 0.75 6.5 1.75 D = Dead Load 5000 S = Snow Load (2) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 4'' o.c. H = Soil Load L / 316 E = Seismic Load (Ultimate)99% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)3466 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)2 Dead - D (plf) 1285.714286 D =214 D =107 Snow - S (plf) 2678.571429 S =446 S =223 Roof Live - Lr (plf) 1285.714286 Lr =214 Lr =107 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)0 -9000 E =-4500 Wind - W (lb-ft/ft)0 -7500 W =-3750 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)93.5 E =10342 Wind - W (psf)78.2 W =8653 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)6100 Dead - D (lb-ft/ft)107 Snow - S (plf)2679 Snow - S (lb-ft/ft)223 Roof Live - Lr (plf)1286 Roof Live - Lr (lb-ft/ft)107 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)5842 Wind - W (lb-ft/ft)4903 Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) Dock Door DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK 5.00 Reinforcement Max Deflection % of Flexural Capacity The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 11.8.2 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB Wall Parameters Wall Height Between Supports (ft)29.75 (Not including parapet) Parapet Height (ft)0 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)29.75 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)7.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)6.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?2 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)4.2 OK As per foot (in2/ft)0.88 (This is the area of tension steel only) Total As in Pier (in2)0.88 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)2.86 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.5 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)4.3 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0202 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.18 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.17 OK r 0.0169 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)78 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)357 = Wall Ht * 12 b1 0.8 Ig (in4/ft)275 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)3.25 = Struc Thk / 2 Mcr (lb-in)44813 = fr * Ig / yt l c / 150 (in)2.38 OK Job Name =IRG Greenline Job Number =2180307.2 Wall Type =8 Wall Description =Dock Door Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. *ASCE 7-10 IBC-2015 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft)8540 8659 11606 11606 8659 10236 5490 4449 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)1800 2882 5829 35247 61719 73741 59994 71042 Pu / Ag (psi)109 111 149 149 111 131 70 57 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 0.98 0.99 1.02 1.02 0.99 1.01 0.95 0.93 a (in) =(Ase*fy) / (0.85*fc*lw)1.16 1.16 1.20 1.20 1.16 1.18 1.11 1.10 CU = C ULTIMATE = a /b1 1.45 1.45 1.50 1.50 1.45 1.48 1.39 1.37 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 70.25 70.30 71.64 71.64 70.30 71.02 68.84 68.35 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =3862 6279 20204 122182 134456 200930 92335 99483 Mn (lb-in) = Ase * fy * (d - a/2) 220404 220688 227641 227641 220688 224420 213100 210584 Cu / d 0.34 0.34 0.35 0.35 0.34 0.34 0.32 0.32 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)198364 198619 204877 204877 198619 201978 191790 189526 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 2%3%10%60%68%99%48%52%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Job Number =2E+06 Wall Type =8 Wall Description =Dock Door D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft)8779 6100 6100 7439 8779 8779 Applied Moment at Mid Ht = Msa (lb-in/ft)3964 36588 50359 37927 21615 53037 Ase (in2) = (Ps + As*fy) / fy 1.02 0.98 0.98 1.00 1.02 1.02 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.387 0.387 0.387 0.387 0.387 0.387 CE = C ELASTIC = k * d 1.67 1.67 1.67 1.67 1.67 1.67 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 70.04 67.79 67.79 68.91 70.04 70.04 M1 = Msa (lb-in)3964 36588 50359 37927 21615 53037 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 275 275 214 275 275 193 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))4431 39476 55589 41643 24159 62359 Ie2 (in4)275 275 176 275 275 146 M3 (lb-in)4431 39476 56843 41643 24159 66140 Ie3 (in4)275 275 169 275 275 134 M4 (lb-in)4431 39476 57148 41643 24159 67677 Ie4 (in4)275 275 168 275 275 129 M5 (lb-in)4431 39476 57222 41643 24159 68295 Ie5 (in4)275 275 167 275 275 128 M6 (lb-in)4431 39476 57240 41643 24159 68541 Ie6 (in4)275 275 167 275 275 127 M7 (lb-in)4431 39476 57245 41643 24159 68639 Ie7 (in4)275 275 167 275 275 127 l c / 150 (in)2.38 2.38 2.38 2.38 2.38 2.38 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.05 0.47 1.13 0.50 0.29 E+S is N/A OK OK OK OK OK OK OKA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7EA=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WU=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5* Job Name = Job Number = Wall Type = Wall Description = Wall Ht =29.75 ft Wall Weight at Mid Height b =0.001 ft Wt of Concrete=150 pcf c =0.001 ft Wall Thickness=7.25 in. e =2.00 ft Concentric Load=0 plf d = 29.749 ft Seismic Fp=.4Sd*=0.3412 Wp a = 0.0005 ft a = b/2 Roof Weight Joist Span=60 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =12 psf Live Floor=0 psf eccentricity 2 inch equiv DL =360.09 plf equiv SL =750.1875 plf c equiv Lr =360.09 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =30.9 psf P wind equiv =21.9 psf P seismic equiv =30.9 psf Equivalent Wind and Seismic Load IRG Greenline 2180307.2 10 Blank Portion Page 1 Description Panel 10 Equivalent Moments Multi-Span Steel BeamRev: 580010 User: KW-0602298, Ver 5.8.0, 15-Jun-2007 (c)1983-2007 ENERCALC Engineering Software 2180307_irg.ecw:Calculations Scope : Title :Job # Description : Dsgnr:Date:11:03AM, 8 AUG 18 General Information Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Fy - Yield Stress Spans Considered Continuous Over Supports 36.00 ksi Load Duration Factor 1.00 Span Information SeismicDescription Wind wind wind Span ft 4.75 29.75 4.75 29.50 5.00 Steel Section W8X24 W8X24 W8X24 W8X24 W8X24 Pin-Pin Pin-Pin Pin-Pin Pin-Pin Pin-Free 0.00ft 0.00 0.00 0.00 0.00Unbraced Length End Fixity Loads Live Load Used This Span ?Yes Yes Yes Yes Yes 0.031 0.031 0.022 0.022 -0.022Dead Load k/ft Live Load k/ft Results 0.00 2.11 0.00 1.59 0.00Mmax @ Cntr k-ft @ X =ft 0.00 18.05 0.00 18.49 0.00 Max @ Left End 0.00 -2.97 0.00 -2.19 0.27k-ft Max @ Right End -2.97 0.00 -2.19 0.27 0.00k-ft fb : Actual 1,708.4 1,708.4 1,259.0 1,259.0 158.2 Fb : Allowable psi 23,760.0 23,760.0 23,760.0 23,760.0 23,760.0 Bending OK Bending OK Bending OK 288.7fv : Actual 359.7 56.6 264.0 210.0 14,400.0 psi 14,400.0 14,400.0Fv : Allowable 14,400.0 14,400.0psi Bending OK Bending OK psi Reactions & Deflections 0.55 0.56 0.41 0.41 0.11Shear @ Left k Shear @ Right k 0.70 0.36 0.51 0.24 0.00 Reactions... DL @ Left k -0.55 1.26 -0.41 0.92 0.13 LL @ Left k 0.00 0.00 0.00 0.00 0.00 Total @ Left DL @ Right LL @ Right Total @ Right k -0.55 1.26 -0.41 0.92 0.13 k 1.26 0.36 0.92 0.13 0.00 k 0.00 0.00 0.00 0.00 0.00 k 1.26 0.36 0.92 0.13 0.00 Max. Deflection in 0.003 -0.112 0.002 -0.084 0.057 @ X =ft 2.75 16.66 2.75 16.72 5.00 Span/Deflection Ratio 19,301.7 3,190.5 26,144.6 4,237.4 2,096.1 Query Values 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Locationft Shear k 0.55 0.56 0.00 0.41 0.41 0.11 0.00 0.00 Moment 0.00 -2.97 0.00 0.00 -2.19 0.27 0.00 0.00k-ft 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000Max. Deflection in Alternate Concrete Slender Wall Design (ACI 318-11 Sect 11.8) Job Name = Job Number = 2180307.20 Wall Type =10 Wall Description = 29.75 29.75 7.25 0.75 6.5 2.00 D = Dead Load 5000 S = Snow Load (1) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 10'' o.c. H = Soil Load L / 1767 E = Seismic Load (Ultimate)85% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)0 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)2 Dead - D (plf)360.09 D =60 D =30 Snow - S (plf)750.1875 S =125 S =63 Roof Live - Lr (plf)360.09 Lr =60 Lr =30 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)0 -3000 E =-1500 Wind - W (lb-ft/ft)0 -2200 W =-1100 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)30.9 E =3422 Wind - W (psf)21.9 W =2423 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)1708 Dead - D (lb-ft/ft)30 Snow - S (plf)750 Snow - S (lb-ft/ft)63 Roof Live - Lr (plf)360 Roof Live - Lr (lb-ft/ft)30 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)1922 Wind - W (lb-ft/ft)1323 Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) Blank Portion DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK 2.40 Reinforcement Max Deflection % of Flexural Capacity The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 11.8.2 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB Wall Parameters Wall Height Between Supports (ft)29.75 (Not including parapet) Parapet Height (ft)0 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)29.75 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)7.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)6.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?1 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)10 OK As per foot (in2/ft)0.37 (This is the area of tension steel only) Total As in Pier (in2)0.37 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)1.20 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.5 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)3.3 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0042 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.14 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.13 OK r 0.0094 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)78 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)357 = Wall Ht * 12 b1 0.8 Ig (in4/ft)275 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)3.25 = Struc Thk / 2 Mcr (lb-in)44813 = fr * Ig / yt l c / 150 (in)2.38 OK Job Name =IRG Greenline Job Number =2180307.2 Wall Type =10 Wall Description =Blank Portion Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. *ASCE 7-10 IBC-2015 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft)2392 2425 3250 3250 2425 2867 1538 1246 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)504 807 1632 9573 16689 24080 16206 23324 Pu / Ag (psi)31 31 42 42 31 37 20 16 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 0.41 0.41 0.42 0.42 0.41 0.42 0.39 0.39 a (in) =(Ase*fy) / (0.85*fc*lw)0.48 0.48 0.50 0.50 0.48 0.49 0.46 0.46 CU = C ULTIMATE = a /b1 0.60 0.60 0.62 0.62 0.60 0.61 0.58 0.57 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 21.48 21.50 21.96 21.96 21.50 21.75 20.99 20.82 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =987 1600 4665 27358 33076 57189 23893 31642 Mn (lb-in) = Ase * fy * (d - a/2) 73688 73781 76059 76059 73781 75001 71315 70502 Cu / d 0.18 0.18 0.19 0.19 0.18 0.19 0.18 0.18 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)66319 66403 68453 68453 66403 67501 64183 63452 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 1%2%7%40%50%85%37%50%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Job Number =2E+06 Wall Type =10 Wall Description =Blank Portion D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft)2459 1708 1708 2084 2459 2459 Applied Moment at Mid Ht = Msa (lb-in/ft)1110 9889 16503 10264 5875 17253 Ase (in2) = (Ps + As*fy) / fy 0.41 0.40 0.40 0.40 0.41 0.41 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.307 0.307 0.307 0.307 0.307 0.307 CE = C ELASTIC = k * d 1.00 1.00 1.00 1.00 1.00 1.00 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 18.91 18.45 18.45 18.68 18.91 18.91 M1 = Msa (lb-in)1110 9889 16503 10264 5875 17253 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 275 275 275 275 275 275 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))1144 10096 16848 10527 6053 17777 Ie2 (in4)275 275 275 275 275 275 M3 (lb-in)1144 10096 16848 10527 6053 17777 Ie3 (in4)275 275 275 275 275 275 M4 (lb-in)1144 10096 16848 10527 6053 17777 Ie4 (in4)275 275 275 275 275 275 M5 (lb-in)1144 10096 16848 10527 6053 17777 Ie5 (in4)275 275 275 275 275 275 M6 (lb-in)1144 10096 16848 10527 6053 17777 Ie6 (in4)275 275 275 275 275 275 M7 (lb-in)1144 10096 16848 10527 6053 17777 Ie7 (in4)275 275 275 275 275 275 l c / 150 (in)2.38 2.38 2.38 2.38 2.38 2.38 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.01 0.12 0.20 0.13 0.07 E+S is N/A OK OK OK OK OK OK OKA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7EA=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WU=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5* Job Name = Job Number = Wall Type = Wall Description = Wall Ht =35 ft Wall Weight at Mid Height b =0.001 ft Wt of Concrete=150 pcf c =0.001 ft Wall Thickness=9.25 in. e =4.00 ft Concentric Load=0 plf d = 34.999 ft Seismic Fp=.4Sd*=0.3412 Wp a = 0.0005 ft a = b/2 Roof Weight Joist Span=68 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =12 psf Live Floor=0 psf eccentricity 6 inch equiv DL =408.051 plf equiv SL =850.10625 plf c equiv Lr =408.051 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =39.5 psf P wind equiv =21.9 psf P seismic equiv =39.5 psf Equivalent Wind and Seismic Load IRG Greenline 2180307.2 34 Blank Panel 9 1/4 Page 1 Description Panel 34 Equivalent Moments Multi-Span Steel BeamRev: 580010 User: KW-0602298, Ver 5.8.0, 15-Jun-2007 (c)1983-2007 ENERCALC Engineering Software 2180307_irg.ecw:Calculations Scope : Title :Job # Description : Dsgnr:Date:11:03AM, 8 AUG 18 General Information Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Fy - Yield Stress Spans Considered Continuous Over Supports 36.00 ksi Load Duration Factor 1.00 Span Information SeismicDescription Wind wind wind Span ft 3.00 35.00 3.00 35.00 5.00 Steel Section W8X24 W8X24 W8X24 W8X24 W8X24 Pin-Pin Pin-Pin Pin-Pin Pin-Pin Pin-Free 0.00ft 0.00 0.00 0.00 0.00Unbraced Length End Fixity Loads Live Load Used This Span ?Yes Yes Yes Yes Yes 0.040 0.040 0.022 0.022 -0.022Dead Load k/ft Live Load k/ft Results 0.00 3.63 0.00 2.12 0.00Mmax @ Cntr k-ft @ X =ft 0.00 21.47 0.00 22.17 0.00 Max @ Left End 0.00 -5.64 0.00 -3.23 0.27k-ft Max @ Right End -5.64 0.00 -3.23 0.27 0.00k-ft fb : Actual 3,247.8 3,247.8 1,859.1 1,859.1 158.2 Fb : Allowable psi 23,760.0 23,760.0 23,760.0 23,760.0 23,760.0 Bending OK Bending OK Bending OK 443.3fv : Actual 999.4 56.6 571.4 249.7 14,400.0 psi 14,400.0 14,400.0Fv : Allowable 14,400.0 14,400.0psi Bending OK Bending OK psi Reactions & Deflections 1.82 0.86 1.04 0.49 0.11Shear @ Left k Shear @ Right k 1.94 0.54 1.11 0.28 0.00 Reactions... DL @ Left k -1.82 2.80 -1.04 1.60 0.17 LL @ Left k 0.00 0.00 0.00 0.00 0.00 Total @ Left DL @ Right LL @ Right Total @ Right k -1.82 2.80 -1.04 1.60 0.17 k 2.80 0.54 1.60 0.17 0.00 k 0.00 0.00 0.00 0.00 0.00 k 2.80 0.54 1.60 0.17 0.00 Max. Deflection in 0.002 -0.259 0.001 -0.151 0.086 @ X =ft 1.74 19.83 1.74 20.07 5.00 Span/Deflection Ratio 15,525.9 1,622.6 27,109.1 2,773.9 1,388.0 Query Values 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Locationft Shear k 1.82 0.86 0.00 1.04 0.49 0.11 0.00 0.00 Moment 0.00 -5.64 0.00 0.00 -3.23 0.27 0.00 0.00k-ft 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000Max. Deflection in Alternate Concrete Slender Wall Design (ACI 318-11 Sect 11.8) Job Name = Job Number = 2180307.20 Wall Type =34 Wall Description = 35 38 9.25 0.75 8.5 4.00 D = Dead Load 5000 S = Snow Load (1) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 8'' o.c. H = Soil Load L / 1919 E = Seismic Load (Ultimate)86% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)0 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)6 Dead - D (plf)408.051 D =204 D =102 Snow - S (plf)850.10625 S =425 S =213 Roof Live - Lr (plf)408.051 Lr =204 Lr =102 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)100 -5600 E =-2750 Wind - W (lb-ft/ft)100 -3200 W =-1550 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)39.5 E =6042 Wind - W (psf)21.9 W =3354 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)2779 Dead - D (lb-ft/ft)102 Snow - S (plf)850 Snow - S (lb-ft/ft)213 Roof Live - Lr (plf)408 Roof Live - Lr (lb-ft/ft)102 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)3292 Wind - W (lb-ft/ft)1804 Reinforcement Max Deflection % of Flexural Capacity 6.00 Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) Blank Panel 9 1/4 DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 11.8.2 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB Wall Parameters Wall Height Between Supports (ft)35 (Not including parapet) Parapet Height (ft)3 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)38 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)9.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)8.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?1 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)8 OK As per foot (in2/ft)0.46 (This is the area of tension steel only) Total As in Pier (in2)0.46 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)1.50 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.5 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)4.3 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0041 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.18 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.17 OK r 0.0090 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)102 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)420 = Wall Ht * 12 b1 0.8 Ig (in4/ft)614 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)4.25 = Struc Thk / 2 Mcr (lb-in)76633 = fr * Ig / yt l c / 150 (in)2.8 OK Job Name =IRG Greenline Job Number =2180307.2 Wall Type =34 Wall Description =Blank Panel 9 1/4 Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. *ASCE 7-10 IBC-2015 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft)3890 3759 4695 4695 3759 4404 2501 2027 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)1714 2744 5549 16373 24390 42964 22748 40394 Pu / Ag (psi)38 37 46 46 37 43 25 20 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 0.53 0.52 0.54 0.54 0.52 0.53 0.50 0.49 a (in) =(Ase*fy) / (0.85*fc*lw)0.62 0.62 0.63 0.63 0.62 0.63 0.59 0.58 CU = C ULTIMATE = a /b1 0.77 0.77 0.79 0.79 0.77 0.78 0.74 0.73 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 47.53 47.41 48.32 48.32 47.41 48.04 46.15 45.66 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =3410 5298 13556 39993 47090 97036 33923 55320 Mn (lb-in) = Ase * fy * (d - a/2) 124154 123679 127069 127069 123679 126016 119088 117351 Cu / d 0.18 0.18 0.19 0.19 0.18 0.18 0.17 0.17 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)111738 111311 114362 114362 111311 113414 107180 105616 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 3%5%12%35%42%86%32%52%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Job Number =2E+06 Wall Type =34 Wall Description =Blank Panel 9 1/4 D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft)3629 2779 2779 3204 3629 3629 Applied Moment at Mid Ht = Msa (lb-in/ft)3774 14212 28875 15487 10268 31425 Ase (in2) = (Ps + As*fy) / fy 0.52 0.51 0.51 0.51 0.52 0.52 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.301 0.301 0.301 0.301 0.301 0.301 CE = C ELASTIC = k * d 1.28 1.28 1.28 1.28 1.28 1.28 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 41.43 40.53 40.53 40.98 41.43 41.43 M1 = Msa (lb-in)3774 14212 28875 15487 10268 31425 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 614 614 614 614 614 614 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))3879 14511 29483 15864 10553 32295 Ie2 (in4)614 614 614 614 614 614 M3 (lb-in)3879 14511 29483 15864 10553 32295 Ie3 (in4)614 614 614 614 614 614 M4 (lb-in)3879 14511 29483 15864 10553 32295 Ie4 (in4)614 614 614 614 614 614 M5 (lb-in)3879 14511 29483 15864 10553 32295 Ie5 (in4)614 614 614 614 614 614 M6 (lb-in)3879 14511 29483 15864 10553 32295 Ie6 (in4)614 614 614 614 614 614 M7 (lb-in)3879 14511 29483 15864 10553 32295 Ie7 (in4)614 614 614 614 614 614 l c / 150 (in)2.8 2.8 2.8 2.8 2.8 2.8 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.03 0.11 0.22 0.12 0.08 E+S is N/A OK OK OK OK OK OK OK Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5*U=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 A=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7E Job Name = Job Number = Wall Type = Wall Description = Wall Ht =35 ft Wall Weight at Mid Height b =7.5 ft Wt of Concrete=150 pcf c =3 ft Wall Thickness=9.25 in. e =2.50 ft Concentric Load=3555 plf d =32 ft Seismic Fp=.4Sd*=0.3412 Wp a =3.75 ft a = b/2 Roof Weight Joist Span=60 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =12 psf Live Floor=0 psf eccentricity 6 inch equiv DL =900 plf equiv SL =1875 plf c equiv Lr =900 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =39.5 psf P wind equiv =54.8 psf P seismic equiv =97.8 psf Equivalent Wind and Seismic Load IRG Greenline 2180307.2 35 7' 6" window Page 1 Description Panel 35 Equivalent Moments Multi-Span Steel BeamRev: 580010 User: KW-0602298, Ver 5.8.0, 15-Jun-2007 (c)1983-2007 ENERCALC Engineering Software 2180307_irg.ecw:Calculations Scope : Title :Job # Description : Dsgnr:Date:11:03AM, 8 AUG 18 General Information Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Fy - Yield Stress Spans Considered Continuous Over Supports 36.00 ksi Load Duration Factor 1.00 Span Information SeismicDescription Wind wind wind Span ft 3.00 35.00 3.00 35.00 5.00 Steel Section W8X24 W8X24 W8X24 W8X24 W8X24 Pin-Pin Pin-Pin Pin-Pin Pin-Pin Pin-Free 0.00ft 0.00 0.00 0.00 0.00Unbraced Length End Fixity Loads Live Load Used This Span ?Yes Yes Yes Yes Yes 0.098 0.098 0.055 0.055 -0.022Dead Load k/ft Live Load k/ft Results 0.00 8.89 0.00 5.11 0.00Mmax @ Cntr k-ft @ X =ft 0.00 21.47 0.00 21.70 0.00 Max @ Left End 0.00 -13.83 0.00 -7.89 0.27k-ft Max @ Right End -13.83 0.00 -7.89 0.27 0.00k-ft fb : Actual 7,957.0 7,957.0 4,538.5 4,538.5 158.2 Fb : Allowable psi 23,760.0 23,760.0 23,760.0 23,760.0 23,760.0 Bending OK Bending OK Bending OK 1,086.1fv : Actual 2,448.5 56.6 1,395.9 615.5 14,400.0 psi 14,400.0 14,400.0Fv : Allowable 14,400.0 14,400.0psi Bending OK Bending OK psi Reactions & Deflections 4.46 2.11 2.55 1.20 0.11Shear @ Left k Shear @ Right k 4.76 1.32 2.71 0.73 0.00 Reactions... DL @ Left k -4.46 6.87 -2.55 3.91 0.62 LL @ Left k 0.00 0.00 0.00 0.00 0.00 Total @ Left DL @ Right LL @ Right Total @ Right k -4.46 6.87 -2.55 3.91 0.62 k 6.87 1.32 3.91 0.62 0.00 k 0.00 0.00 0.00 0.00 0.00 k 6.87 1.32 3.91 0.62 0.00 Max. Deflection in 0.006 -0.634 0.003 -0.365 0.199 @ X =ft 1.74 19.83 1.74 20.07 5.00 Span/Deflection Ratio 6,337.1 662.3 11,108.0 1,150.9 603.0 Query Values 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Locationft Shear k 4.46 2.11 0.00 2.55 1.20 0.11 0.00 0.00 Moment 0.00 -13.83 0.00 0.00 -7.89 0.27 0.00 0.00k-ft 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000Max. Deflection in Alternate Concrete Slender Wall Design (ACI 318-11 Sect 11.8) Job Name = Job Number = 2180307.20 Wall Type =35 Wall Description = 35 38 9.25 0.75 8.5 2.50 D = Dead Load 5000 S = Snow Load (2) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 6'' o.c. H = Soil Load L / 762 E = Seismic Load (Ultimate)79% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)3555 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)6 Dead - D (plf)900 D =450 D =225 Snow - S (plf)1875 S =938 S =469 Roof Live - Lr (plf)900 Lr =450 Lr =225 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)0 -13800 E =-6900 Wind - W (lb-ft/ft)0 -7900 W =-3950 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)97.8 E =14970 Wind - W (psf)54.8 W =8384 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)6826 Dead - D (lb-ft/ft)225 Snow - S (plf)1875 Snow - S (lb-ft/ft)469 Roof Live - Lr (plf)900 Roof Live - Lr (lb-ft/ft)225 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)8070 Wind - W (lb-ft/ft)4434 Reinforcement Max Deflection % of Flexural Capacity 5.00 Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) 7' 6" window DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 11.8.2 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB Wall Parameters Wall Height Between Supports (ft)35 (Not including parapet) Parapet Height (ft)3 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)38 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)9.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)8.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?2 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)6 OK As per foot (in2/ft)0.61 (This is the area of tension steel only) Total As in Pier (in2)0.61 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)2.00 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.5 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)6.3 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0111 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.27 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.25 OK r 0.0081 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)102 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)420 = Wall Ht * 12 b1 0.8 Ig (in4/ft)614 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)4.25 = Struc Thk / 2 Mcr (lb-in)76633 = fr * Ig / yt l c / 150 (in)2.8 OK Job Name =IRG Greenline Job Number =2180307.2 Wall Type =35 Wall Description =7' 6" window Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. *ASCE 7-10 IBC-2015 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft)9556 9128 11191 11191 9128 10668 6143 4979 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)3780 6053 12240 38842 59256 104475 55633 98807 Pu / Ag (psi)94 89 110 110 89 105 60 49 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 0.72 0.72 0.74 0.74 0.72 0.73 0.68 0.67 a (in) =(Ase*fy) / (0.85*fc*lw)0.85 0.84 0.87 0.87 0.84 0.86 0.80 0.79 CU = C ULTIMATE = a /b1 1.06 1.05 1.09 1.09 1.05 1.08 1.00 0.98 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 147.85 147.18 150.36 150.36 147.18 149.56 142.45 140.56 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =6226 9715 22353 70933 95113 184447 75399 125919 Mn (lb-in) = Ase * fy * (d - a/2) 254674 253099 260676 260676 253099 258759 242066 237740 Cu / d 0.17 0.17 0.17 0.17 0.17 0.17 0.16 0.16 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)229206 227790 234609 234609 227790 232883 217859 213966 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 3%4%10%30%42%79%35%59%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Job Number =2E+06 Wall Type =35 Wall Description =7' 6" window D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft)8701 6826 6826 7763 8701 8701 Applied Moment at Mid Ht = Msa (lb-in/ft)8325 34622 70486 37434 24286 76111 Ase (in2) = (Ps + As*fy) / fy 0.76 0.73 0.73 0.74 0.76 0.76 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.288 0.288 0.288 0.288 0.288 0.288 CE = C ELASTIC = k * d 1.82 1.82 1.82 1.82 1.82 1.82 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 134.29 129.75 129.75 132.02 134.29 134.29 M1 = Msa (lb-in)8325 34622 70486 37434 24286 76111 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 614 614 614 614 614 614 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))8900 36470 74248 39724 25963 81367 Ie2 (in4)614 614 614 614 614 535 M3 (lb-in)8900 36470 74248 39724 25963 82204 Ie3 (in4)614 614 614 614 614 523 M4 (lb-in)8900 36470 74248 39724 25963 82357 Ie4 (in4)614 614 614 614 614 521 M5 (lb-in)8900 36470 74248 39724 25963 82385 Ie5 (in4)614 614 614 614 614 520 M6 (lb-in)8900 36470 74248 39724 25963 82390 Ie6 (in4)614 614 614 614 614 520 M7 (lb-in)8900 36470 74248 39724 25963 82391 Ie7 (in4)614 614 614 614 614 520 l c / 150 (in)2.8 2.8 2.8 2.8 2.8 2.8 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.07 0.27 0.55 0.29 0.19 E+S is N/A OK OK OK OK OK OK OK Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5*U=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 A=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7E Job Name = Job Number = Wall Type = Wall Description = Wall Ht =35 ft Wall Weight at Mid Height b =3.4 ft Wt of Concrete=150 pcf c =7 ft Wall Thickness=9.25 in. e =3.67 ft Concentric Load=1099 plf d =28 ft Seismic Fp=.4Sd*=0.3412 Wp a =1.7 ft a = b/2 Roof Weight Joist Span=60 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =12 psf Live Floor=0 psf eccentricity 6 inch equiv DL =526.89392 plf equiv SL =1097.6957 plf c equiv Lr =526.89392 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =39.5 psf P wind equiv =32.1 psf P seismic equiv =56.3 psf Equivalent Wind and Seismic Load IRG Greenline 2180307.2 35 Man Door Page 1 Description Panel 37 Equivalent Moments Multi-Span Steel BeamRev: 580010 User: KW-0602298, Ver 5.8.0, 15-Jun-2007 (c)1983-2007 ENERCALC Engineering Software 2180307_irg.ecw:Calculations Scope : Title :Job # Description : Dsgnr:Date:11:03AM, 8 AUG 18 General Information Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Fy - Yield Stress Spans Considered Continuous Over Supports 36.00 ksi Load Duration Factor 1.00 Span Information SeismicDescription Wind wind wind Span ft 3.00 35.00 3.00 35.00 5.00 Steel Section W8X24 W8X24 W8X24 W8X24 W8X24 Pin-Pin Pin-Pin Pin-Pin Pin-Pin Pin-Free 0.00ft 0.00 0.00 0.00 0.00Unbraced Length End Fixity Loads Live Load Used This Span ?Yes Yes Yes Yes Yes 0.056 0.056 0.032 0.032 -0.022Dead Load k/ft Live Load k/ft Results 0.00 5.08 0.00 3.02 0.00Mmax @ Cntr k-ft @ X =ft 0.00 21.47 0.00 21.93 0.00 Max @ Left End 0.00 -7.90 0.00 -4.64 0.27k-ft Max @ Right End -7.90 0.00 -4.64 0.27 0.00k-ft fb : Actual 4,546.9 4,546.9 2,671.1 2,671.1 158.2 Fb : Allowable psi 23,760.0 23,760.0 23,760.0 23,760.0 23,760.0 Bending OK Bending OK Bending OK 620.6fv : Actual 1,399.1 56.6 821.2 360.6 14,400.0 psi 14,400.0 14,400.0Fv : Allowable 14,400.0 14,400.0psi Bending OK Bending OK psi Reactions & Deflections 2.55 1.21 1.50 0.70 0.11Shear @ Left k Shear @ Right k 2.72 0.75 1.60 0.42 0.00 Reactions... DL @ Left k -2.55 3.92 -1.50 2.30 0.31 LL @ Left k 0.00 0.00 0.00 0.00 0.00 Total @ Left DL @ Right LL @ Right Total @ Right k -2.55 3.92 -1.50 2.30 0.31 k 3.92 0.75 2.30 0.31 0.00 k 0.00 0.00 0.00 0.00 0.00 k 3.92 0.75 2.30 0.31 0.00 Max. Deflection in 0.003 -0.362 0.002 -0.216 0.121 @ X =ft 1.74 19.83 1.74 20.07 5.00 Span/Deflection Ratio 11,089.9 1,159.0 18,871.4 1,943.4 995.4 Query Values 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Locationft Shear k 2.55 1.21 0.00 1.50 0.70 0.11 0.00 0.00 Moment 0.00 -7.90 0.00 0.00 -4.64 0.27 0.00 0.00k-ft 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000Max. Deflection in Alternate Concrete Slender Wall Design (ACI 318-11 Sect 11.8) Job Name = Job Number = 2180307.20 Wall Type =35 Wall Description = 35 38 9.25 0.75 8.5 3.67 D = Dead Load 5000 S = Snow Load (2) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 11'' o.c. H = Soil Load L / 1345 E = Seismic Load (Ultimate)75% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)1099 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)6 Dead - D (plf) 526.8939187 D =263 D =132 Snow - S (plf) 1097.695664 S =549 S =274 Roof Live - Lr (plf) 526.8939187 Lr =263 Lr =132 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)0 -7900 E =-3950 Wind - W (lb-ft/ft)0 -4600 W =-2300 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)56.3 E =8622 Wind - W (psf)32.1 W =4908 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)3996 Dead - D (lb-ft/ft)132 Snow - S (plf)1098 Snow - S (lb-ft/ft)274 Roof Live - Lr (plf)527 Roof Live - Lr (lb-ft/ft)132 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)4672 Wind - W (lb-ft/ft)2608 Reinforcement Max Deflection % of Flexural Capacity 4.00 Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) Man Door DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 11.8.2 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB Wall Parameters Wall Height Between Supports (ft)35 (Not including parapet) Parapet Height (ft)3 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)38 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)9.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)8.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?2 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)11 OK As per foot (in2/ft)0.33 (This is the area of tension steel only) Total As in Pier (in2)0.33 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)1.09 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.5 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)6.3 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0060 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.27 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.25 OK r 0.0044 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)102 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)420 = Wall Ht * 12 b1 0.8 Ig (in4/ft)614 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)4.25 = Struc Thk / 2 Mcr (lb-in)76633 = fr * Ig / yt l c / 150 (in)2.8 OK Job Name =IRG Greenline Job Number =2180307.2 Wall Type =35 Wall Description =Man Door Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. *ASCE 7-10 IBC-2015 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft)5594 5344 6552 6552 5344 6245 3596 2915 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)2213 3543 7166 22814 34840 60535 32719 57217 Pu / Ag (psi)55 52 64 64 52 61 35 29 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 0.40 0.39 0.41 0.41 0.39 0.40 0.38 0.37 a (in) =(Ase*fy) / (0.85*fc*lw)0.47 0.46 0.48 0.48 0.46 0.48 0.44 0.43 CU = C ULTIMATE = a /b1 0.58 0.58 0.60 0.60 0.58 0.60 0.55 0.54 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 94.63 94.08 96.70 96.70 94.08 96.04 90.23 88.71 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =3454 5412 12183 38789 53214 100106 43182 71497 Mn (lb-in) = Ase * fy * (d - a/2) 144964 143978 148726 148726 143978 147523 137083 134387 Cu / d 0.09 0.09 0.10 0.10 0.09 0.09 0.09 0.09 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)130467 129580 133853 133853 129580 132771 123375 120948 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 3%4%9%29%41%75%35%59%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Job Number =2E+06 Wall Type =35 Wall Description =Man Door D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft)5094 3996 3996 4545 5094 5094 Applied Moment at Mid Ht = Msa (lb-in/ft)4874 20359 40825 22005 14263 44118 Ase (in2) = (Ps + As*fy) / fy 0.42 0.40 0.40 0.41 0.42 0.42 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.222 0.222 0.222 0.222 0.222 0.222 CE = C ELASTIC = k * d 1.40 1.40 1.40 1.40 1.40 1.40 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 83.81 80.64 80.64 82.22 83.81 83.81 M1 = Msa (lb-in)4874 20359 40825 22005 14263 44118 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 614 614 614 614 614 614 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))5065 20981 42073 22774 14823 45852 Ie2 (in4)614 614 614 614 614 614 M3 (lb-in)5065 20981 42073 22774 14823 45852 Ie3 (in4)614 614 614 614 614 614 M4 (lb-in)5065 20981 42073 22774 14823 45852 Ie4 (in4)614 614 614 614 614 614 M5 (lb-in)5065 20981 42073 22774 14823 45852 Ie5 (in4)614 614 614 614 614 614 M6 (lb-in)5065 20981 42073 22774 14823 45852 Ie6 (in4)614 614 614 614 614 614 M7 (lb-in)5065 20981 42073 22774 14823 45852 Ie7 (in4)614 614 614 614 614 614 l c / 150 (in)2.8 2.8 2.8 2.8 2.8 2.8 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.04 0.16 0.31 0.17 0.11 E+S is N/A OK OK OK OK OK OK OK Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5*U=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 A=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7E Job Name = Job Number = Wall Type = Wall Description = Wall Ht =35 ft Wall Weight at Mid Height b = 13.705 ft Wt of Concrete=150 pcf c =3 ft Wall Thickness=9.25 in. e =4.50 ft Concentric Load=3609 plf d =32 ft Seismic Fp=.4Sd*=0.3412 Wp a = 6.8525 ft a = b/2 Roof Weight Joist Span=42.5 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =12 psf Live Floor=0 psf eccentricity 6 inch equiv DL =643.30833 plf equiv SL =1340.2257 plf c equiv Lr =643.30833 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =39.5 psf P wind equiv =55.2 psf P seismic equiv =98.6 psf Equivalent Wind and Seismic Load IRG Greenline 2180307.2 44A WINDOW-DBL MAN Page 1 Description Panel 44A Equivalent Moments Multi-Span Steel BeamRev: 580010 User: KW-0602298, Ver 5.8.0, 15-Jun-2007 (c)1983-2007 ENERCALC Engineering Software 2180307_irg.ecw:Calculations Scope : Title :Job # Description : Dsgnr:Date:11:03AM, 8 AUG 18 General Information Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Fy - Yield Stress Spans Considered Continuous Over Supports 36.00 ksi Load Duration Factor 1.00 Span Information SeismicDescription Wind wind wind Span ft 3.00 35.00 3.00 35.00 5.00 Steel Section W8X24 W8X24 W8X24 W8X24 W8X24 Pin-Pin Pin-Pin Pin-Pin Pin-Pin Pin-Free 0.00ft 0.00 0.00 0.00 0.00Unbraced Length End Fixity Loads Live Load Used This Span ?Yes Yes Yes Yes Yes 0.078 0.078 0.045 0.045 -0.022Dead Load k/ft Live Load k/ft Results 0.00 7.07 0.00 4.20 0.00Mmax @ Cntr k-ft @ X =ft 0.00 21.47 0.00 21.70 0.00 Max @ Left End 0.00 -11.01 0.00 -6.48 0.27k-ft Max @ Right End -11.01 0.00 -6.48 0.27 0.00k-ft fb : Actual 6,333.1 6,333.1 3,726.6 3,726.6 158.2 Fb : Allowable psi 23,760.0 23,760.0 23,760.0 23,760.0 23,760.0 Bending OK Bending OK Bending OK 864.5fv : Actual 1,948.8 56.6 1,146.0 504.6 14,400.0 psi 14,400.0 14,400.0Fv : Allowable 14,400.0 14,400.0psi Bending OK Bending OK psi Reactions & Deflections 3.55 1.68 2.09 0.98 0.11Shear @ Left k Shear @ Right k 3.79 1.05 2.23 0.59 0.00 Reactions... DL @ Left k -3.55 5.47 -2.09 3.21 0.48 LL @ Left k 0.00 0.00 0.00 0.00 0.00 Total @ Left DL @ Right LL @ Right Total @ Right k -3.55 5.47 -2.09 3.21 0.48 k 5.47 1.05 3.21 0.48 0.00 k 0.00 0.00 0.00 0.00 0.00 k 5.47 1.05 3.21 0.48 0.00 Max. Deflection in 0.005 -0.505 0.003 -0.300 0.165 @ X =ft 1.74 19.83 1.74 20.07 5.00 Span/Deflection Ratio 7,962.0 832.1 13,527.6 1,399.0 727.7 Query Values 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Locationft Shear k 3.55 1.68 0.00 2.09 0.98 0.11 0.00 0.00 Moment 0.00 -11.01 0.00 0.00 -6.48 0.27 0.00 0.00k-ft 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000Max. Deflection in Alternate Concrete Slender Wall Design (ACI 318-11 Sect 11.8) Job Name = Job Number = 2180307.20 Wall Type =44A Wall Description = 35 38 9.25 0.75 8.5 4.50 D = Dead Load 5000 S = Snow Load (2) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 6'' o.c. H = Soil Load L / 768 E = Seismic Load (Ultimate)75% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)3609 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)6 Dead - D (plf) 643.3083333 D =322 D =161 Snow - S (plf) 1340.225694 S =670 S =335 Roof Live - Lr (plf) 643.3083333 Lr =322 Lr =161 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)0 -14000 E =-7000 Wind - W (lb-ft/ft)0 -7900 W =-3950 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)98.6 E =15105 Wind - W (psf)55.2 W =8460 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)6623 Dead - D (lb-ft/ft)161 Snow - S (plf)1340 Snow - S (lb-ft/ft)335 Roof Live - Lr (plf)643 Roof Live - Lr (lb-ft/ft)161 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)8105 Wind - W (lb-ft/ft)4510 Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) WINDOW-DBL MAN DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK 9.00 Reinforcement Max Deflection % of Flexural Capacity The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 11.8.2 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB Wall Parameters Wall Height Between Supports (ft)35 (Not including parapet) Parapet Height (ft)3 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)38 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)9.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)8.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?2 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)6 OK As per foot (in2/ft)0.61 (This is the area of tension steel only) Total As in Pier (in2)0.61 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)2.00 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.5 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)6.3 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0111 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.27 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.25 OK r 0.0081 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)102 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)420 = Wall Ht * 12 b1 0.8 Ig (in4/ft)614 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)4.25 = Struc Thk / 2 Mcr (lb-in)76633 = fr * Ig / yt l c / 150 (in)2.8 OK Job Name =IRG Greenline Job Number =2180307.2 Wall Type =44A Wall Description =WINDOW-DBL MAN Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. *ASCE 7-10 IBC-2015 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft)9272 8618 10092 10092 8618 10016 5961 4831 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)2702 4326 8749 35809 58446 102724 55857 98672 Pu / Ag (psi)91 84 99 99 84 98 58 47 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 0.72 0.71 0.73 0.73 0.71 0.73 0.68 0.67 a (in) =(Ase*fy) / (0.85*fc*lw)0.84 0.84 0.86 0.86 0.84 0.85 0.80 0.79 CU = C ULTIMATE = a /b1 1.06 1.04 1.07 1.07 1.04 1.07 1.00 0.98 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 147.41 146.39 148.68 148.68 146.39 148.56 142.15 140.31 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =4375 6737 14895 60963 91016 174054 74964 124788 Mn (lb-in) = Ase * fy * (d - a/2) 253629 251218 256644 256644 251218 256364 241389 237190 Cu / d 0.17 0.17 0.17 0.17 0.17 0.17 0.16 0.16 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)228266 226096 230980 230980 226096 230727 217250 213471 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 2%3%6%26%40%75%35%58%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Job Number =2E+06 Wall Type =44A Wall Description =WINDOW-DBL MAN D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft)7963 6623 6623 7293 7963 7963 Applied Moment at Mid Ht = Msa (lb-in/ft)5951 34402 70015 36412 22187 74036 Ase (in2) = (Ps + As*fy) / fy 0.75 0.72 0.72 0.74 0.75 0.75 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.288 0.288 0.288 0.288 0.288 0.288 CE = C ELASTIC = k * d 1.82 1.82 1.82 1.82 1.82 1.82 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 132.50 129.26 129.26 130.88 132.50 132.50 M1 = Msa (lb-in)5951 34402 70015 36412 22187 74036 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 614 614 614 614 614 614 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))6324 36181 73635 38496 23581 78687 Ie2 (in4)614 614 614 614 614 577 M3 (lb-in)6324 36181 73635 38496 23581 79003 Ie3 (in4)614 614 614 614 614 572 M4 (lb-in)6324 36181 73635 38496 23581 79053 Ie4 (in4)614 614 614 614 614 571 M5 (lb-in)6324 36181 73635 38496 23581 79060 Ie5 (in4)614 614 614 614 614 571 M6 (lb-in)6324 36181 73635 38496 23581 79061 Ie6 (in4)614 614 614 614 614 571 M7 (lb-in)6324 36181 73635 38496 23581 79062 Ie7 (in4)614 614 614 614 614 571 l c / 150 (in)2.8 2.8 2.8 2.8 2.8 2.8 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.05 0.27 0.55 0.29 0.18 E+S is N/A OK OK OK OK OK OK OKA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7EA=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WU=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5* Job Name = Job Number = Wall Type = Wall Description = Wall Ht =35 ft Wall Weight at Mid Height b =6.33 ft Wt of Concrete=150 pcf c =7 ft Wall Thickness=9.25 in. e =3.00 ft Concentric Load=2501 plf d =28 ft Seismic Fp=.4Sd*=0.3412 Wp a =3.165 ft a = b/2 Roof Weight Joist Span=42.5 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =12 psf Live Floor=0 psf eccentricity 6 inch equiv DL =524.025 plf equiv SL =1091.7188 plf c equiv Lr =524.025 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =39.5 psf P wind equiv =45.0 psf P seismic equiv =77.8 psf Equivalent Wind and Seismic Load IRG Greenline 2180307.2 44B DBL MAN Page 1 Description Panel 44b Equivalent Moments Multi-Span Steel BeamRev: 580010 User: KW-0602298, Ver 5.8.0, 15-Jun-2007 (c)1983-2007 ENERCALC Engineering Software 2180307_irg.ecw:Calculations Scope : Title :Job # Description : Dsgnr:Date:12:45PM, 8 AUG 18 General Information Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Fy - Yield Stress Spans Considered Continuous Over Supports 36.00 ksi Load Duration Factor 1.00 Span Information SeismicDescription Wind wind wind Span ft 3.00 35.00 3.00 35.00 5.00 Steel Section W8X24 W8X24 W8X24 W8X24 W8X24 Pin-Pin Pin-Pin Pin-Pin Pin-Pin Pin-Free 0.00ft 0.00 0.00 0.00 0.00Unbraced Length End Fixity Loads Live Load Used This Span ?Yes Yes Yes Yes Yes 0.078 0.078 0.045 0.045 -0.022Dead Load k/ft Live Load k/ft Results 0.00 7.07 0.00 4.20 0.00Mmax @ Cntr k-ft @ X =ft 0.00 21.47 0.00 21.70 0.00 Max @ Left End 0.00 -11.01 0.00 -6.48 0.27k-ft Max @ Right End -11.01 0.00 -6.48 0.27 0.00k-ft fb : Actual 6,333.1 6,333.1 3,726.6 3,726.6 158.2 Fb : Allowable psi 23,760.0 23,760.0 23,760.0 23,760.0 23,760.0 Bending OK Bending OK Bending OK 864.5fv : Actual 1,948.8 56.6 1,146.0 504.6 14,400.0 psi 14,400.0 14,400.0Fv : Allowable 14,400.0 14,400.0psi Bending OK Bending OK psi Reactions & Deflections 3.55 1.68 2.09 0.98 0.11Shear @ Left k Shear @ Right k 3.79 1.05 2.23 0.59 0.00 Reactions... DL @ Left k -3.55 5.47 -2.09 3.21 0.48 LL @ Left k 0.00 0.00 0.00 0.00 0.00 Total @ Left DL @ Right LL @ Right Total @ Right k -3.55 5.47 -2.09 3.21 0.48 k 5.47 1.05 3.21 0.48 0.00 k 0.00 0.00 0.00 0.00 0.00 k 5.47 1.05 3.21 0.48 0.00 Max. Deflection in 0.005 -0.505 0.003 -0.300 0.165 @ X =ft 1.74 19.83 1.74 20.07 5.00 Span/Deflection Ratio 7,962.0 832.1 13,527.6 1,399.0 727.7 Query Values 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Locationft Shear k 3.55 1.68 0.00 2.09 0.98 0.11 0.00 0.00 Moment 0.00 -11.01 0.00 0.00 -6.48 0.27 0.00 0.00k-ft 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000Max. Deflection in Alternate Concrete Slender Wall Design (ACI 318-11 Sect 11.8) Job Name = Job Number = 2180307.20 Wall Type =44B Wall Description = 35 38 9.25 0.75 8.5 3.00 D = Dead Load 5000 S = Snow Load (2) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 7'' o.c. H = Soil Load L / 979 E = Seismic Load (Ultimate)68% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)2501 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)6 Dead - D (plf)524.025 D =262 D =131 Snow - S (plf) 1091.71875 S =546 S =273 Roof Live - Lr (plf)524.025 Lr =262 Lr =131 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)0 -11000 E =-5500 Wind - W (lb-ft/ft)0 -6500 W =-3250 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)77.8 E =11915 Wind - W (psf)45.0 W =6891 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)5395 Dead - D (lb-ft/ft)131 Snow - S (plf)1092 Snow - S (lb-ft/ft)273 Roof Live - Lr (plf)524 Roof Live - Lr (lb-ft/ft)131 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)6415 Wind - W (lb-ft/ft)3641 Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) DBL MAN DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK 5.00 Reinforcement Max Deflection % of Flexural Capacity The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 11.8.2 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB Wall Parameters Wall Height Between Supports (ft)35 (Not including parapet) Parapet Height (ft)3 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)38 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)9.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)8.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?2 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)7.2 OK As per foot (in2/ft)0.51 (This is the area of tension steel only) Total As in Pier (in2)0.51 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)1.67 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.5 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)6.3 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0092 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.27 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.25 OK r 0.0068 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)102 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)420 = Wall Ht * 12 b1 0.8 Ig (in4/ft)614 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)4.25 = Struc Thk / 2 Mcr (lb-in)76633 = fr * Ig / yt l c / 150 (in)2.8 OK Job Name =IRG Greenline Job Number =2180307.2 Wall Type =44B Wall Description =DBL MAN Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. *ASCE 7-10 IBC-2015 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft)7553 7020 8221 8221 7020 8159 4856 3935 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)2201 3524 7127 28975 47220 81422 45111 78121 Pu / Ag (psi)74 69 81 81 69 80 48 39 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 0.60 0.59 0.60 0.60 0.59 0.60 0.57 0.56 a (in) =(Ase*fy) / (0.85*fc*lw)0.70 0.69 0.71 0.71 0.69 0.71 0.67 0.65 CU = C ULTIMATE = a /b1 0.88 0.87 0.89 0.89 0.87 0.89 0.83 0.82 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 129.43 128.48 130.60 130.60 128.48 130.49 124.58 122.89 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =3411 5277 11543 46931 70701 131334 59116 97002 Mn (lb-in) = Ase * fy * (d - a/2) 213225 211210 215746 215746 211210 215512 203002 199499 Cu / d 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)191903 190089 194171 194171 190089 193960 182702 179549 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 2%3%6%24%37%68%32%54%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Job Number =2E+06 Wall Type =44B Wall Description =DBL MAN D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft)6487 5395 5395 5941 6487 6487 Applied Moment at Mid Ht = Msa (lb-in/ft)4847 27790 55454 29427 17956 58729 Ase (in2) = (Ps + As*fy) / fy 0.62 0.60 0.60 0.61 0.62 0.62 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.267 0.267 0.267 0.267 0.267 0.267 CE = C ELASTIC = k * d 1.68 1.68 1.68 1.68 1.68 1.68 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 114.58 111.78 111.78 113.18 114.58 114.58 M1 = Msa (lb-in)4847 27790 55454 29427 17956 58729 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 614 614 614 614 614 614 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))5092 28949 57768 30785 18864 61701 Ie2 (in4)614 614 614 614 614 614 M3 (lb-in)5092 28949 57768 30785 18864 61701 Ie3 (in4)614 614 614 614 614 614 M4 (lb-in)5092 28949 57768 30785 18864 61701 Ie4 (in4)614 614 614 614 614 614 M5 (lb-in)5092 28949 57768 30785 18864 61701 Ie5 (in4)614 614 614 614 614 614 M6 (lb-in)5092 28949 57768 30785 18864 61701 Ie6 (in4)614 614 614 614 614 614 M7 (lb-in)5092 28949 57768 30785 18864 61701 Ie7 (in4)614 614 614 614 614 614 l c / 150 (in)2.8 2.8 2.8 2.8 2.8 2.8 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.04 0.21 0.43 0.23 0.14 E+S is N/A OK OK OK OK OK OK OKA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7EA=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WU=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5* Job Name = Job Number = Wall Type = Wall Description = Wall Ht =35 ft Wall Weight at Mid Height b =9.5 ft Wt of Concrete=150 pcf c =6 ft Wall Thickness=9.25 in. e =2.50 ft Concentric Load=4504 plf d =29 ft Seismic Fp=.4Sd*=0.3412 Wp a =4.75 ft a = b/2 Roof Weight Joist Span=60 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =12 psf Live Floor=0 psf eccentricity 6 inch equiv DL =1044 plf equiv SL =2175 plf c equiv Lr =1044 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =39.5 psf P wind equiv =63.5 psf P seismic equiv =110.1 psf Equivalent Wind and Seismic Load IRG Greenline 2180307.2 48 9' 6" window Page 1 Description Panel 48 Equivalent Moments Multi-Span Steel BeamRev: 580010 User: KW-0602298, Ver 5.8.0, 15-Jun-2007 (c)1983-2007 ENERCALC Engineering Software 2180307_irg.ecw:Calculations Scope : Title :Job # Description : Dsgnr:Date:11:03AM, 8 AUG 18 General Information Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Fy - Yield Stress Spans Considered Continuous Over Supports 36.00 ksi Load Duration Factor 1.00 Span Information SeismicDescription Wind wind wind Span ft 3.00 35.00 3.00 35.00 5.00 Steel Section W8X24 W8X24 W8X24 W8X24 W8X24 Pin-Pin Pin-Pin Pin-Pin Pin-Pin Pin-Free 0.00ft 0.00 0.00 0.00 0.00Unbraced Length End Fixity Loads Live Load Used This Span ?Yes Yes Yes Yes Yes 0.110 0.110 0.064 0.064 -0.022Dead Load k/ft Live Load k/ft Results 0.00 9.98 0.00 5.93 0.00Mmax @ Cntr k-ft @ X =ft 0.00 21.47 0.00 21.70 0.00 Max @ Left End 0.00 -15.52 0.00 -9.16 0.27k-ft Max @ Right End -15.52 0.00 -9.16 0.27 0.00k-ft fb : Actual 8,931.3 8,931.3 5,269.3 5,269.3 158.2 Fb : Allowable psi 23,760.0 23,760.0 23,760.0 23,760.0 23,760.0 Bending OK Bending OK Bending OK 1,219.1fv : Actual 2,748.3 56.6 1,620.8 715.2 14,400.0 psi 14,400.0 14,400.0Fv : Allowable 14,400.0 14,400.0psi Bending OK Bending OK psi Reactions & Deflections 5.01 2.37 2.96 1.39 0.11Shear @ Left k Shear @ Right k 5.34 1.48 3.15 0.85 0.00 Reactions... DL @ Left k -5.01 7.71 -2.96 4.54 0.74 LL @ Left k 0.00 0.00 0.00 0.00 0.00 Total @ Left DL @ Right LL @ Right Total @ Right k -5.01 7.71 -2.96 4.54 0.74 k 7.71 1.48 4.54 0.74 0.00 k 0.00 0.00 0.00 0.00 0.00 k 7.71 1.48 4.54 0.74 0.00 Max. Deflection in 0.006 -0.712 0.004 -0.423 0.235 @ X =ft 1.74 19.83 1.74 19.83 5.00 Span/Deflection Ratio 5,645.8 590.0 9,567.8 992.5 511.5 Query Values 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Locationft Shear k 5.01 2.37 0.00 2.96 1.39 0.11 0.00 0.00 Moment 0.00 -15.52 0.00 0.00 -9.16 0.27 0.00 0.00k-ft 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000Max. Deflection in Alternate Concrete Slender Wall Design (ACI 318-11 Sect 11.8) Job Name = Job Number = 2180307.20 Wall Type =48 Wall Description = 35 38 9.25 0.75 8.5 2.50 D = Dead Load 5000 S = Snow Load (2) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 5'' o.c. H = Soil Load L / 327 E = Seismic Load (Ultimate)90% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)4504 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)6 Dead - D (plf)1044 D =522 D =261 Snow - S (plf)2175 S =1088 S =544 Roof Live - Lr (plf)1044 Lr =522 Lr =261 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)1760 0 D =880 Snow - S (lb-ft/ft)880 0 S =440 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)0 -15500 E =-7750 Wind - W (lb-ft/ft)0 -9200 W =-4600 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)110.1 E =16854 Wind - W (psf)63.5 W =9725 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)7918 Dead - D (lb-ft/ft)1141 Snow - S (plf)2175 Snow - S (lb-ft/ft)984 Roof Live - Lr (plf)1044 Roof Live - Lr (lb-ft/ft)261 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)9104 Wind - W (lb-ft/ft)5125 Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) 9' 6" window DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK 6.00 Reinforcement Max Deflection % of Flexural Capacity The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 11.8.2 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB Wall Parameters Wall Height Between Supports (ft)35 (Not including parapet) Parapet Height (ft)3 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)38 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)9.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)8.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?2 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)5 OK As per foot (in2/ft)0.74 (This is the area of tension steel only) Total As in Pier (in2)0.74 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)2.40 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.5 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)6.3 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0133 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.27 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.25 OK r 0.0097 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)102 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)420 = Wall Ht * 12 b1 0.8 Ig (in4/ft)614 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)4.25 = Struc Thk / 2 Mcr (lb-in)76633 = fr * Ig / yt l c / 150 (in)2.8 OK Job Name =IRG Greenline Job Number =2180307.2 Wall Type =48 Wall Description =9' 6" window Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. *ASCE 7-10 IBC-2015 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft) 11085 10589 12981 12981 10589 12375 7126 5775 Factored Applied Moment at Mid Ht = Mua (lb-in/ft) 19169 22333 35318 66068 83833 136279 73822 119236 Pu / Ag (psi)109 104 127 127 104 121 70 57 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 0.86 0.86 0.88 0.88 0.86 0.88 0.82 0.80 a (in) =(Ase*fy) / (0.85*fc*lw)1.01 1.01 1.04 1.04 1.01 1.03 0.96 0.94 CU = C ULTIMATE = a /b1 1.27 1.26 1.30 1.30 1.26 1.29 1.20 1.18 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 165.84 165.17 168.36 168.36 165.17 167.56 160.41 158.49 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =32287 36593 66475 124351 137360 247297 101133 153161 Mn (lb-in) = Ase * fy * (d - a/2) 299844 298073 306595 306595 298073 304439 285648 280772 Cu / d 0.20 0.20 0.21 0.21 0.20 0.20 0.19 0.19 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)269860 268265 275935 275935 268265 273995 257083 252695 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 12%14%24%45%51%90%39%61%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Job Number =2E+06 Wall Type =48 Wall Description =9' 6" window D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft) 10093 7918 7918 9005 10093 10093 Applied Moment at Mid Ht = Msa (lb-in/ft) 25497 50592 90167 56494 43947 101972 Ase (in2) = (Ps + As*fy) / fy 0.90 0.87 0.87 0.89 0.90 0.90 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.311 0.311 0.311 0.311 0.311 0.311 CE = C ELASTIC = k * d 1.96 1.96 1.96 1.96 1.96 1.96 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 153.41 148.47 148.47 150.94 153.41 153.41 M1 = Msa (lb-in) 25497 50592 90167 56494 43947 101972 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 614 614 434 614 614 349 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))27562 53751 98339 60542 47506 117460 Ie2 (in4)614 614 369 614 614 281 M3 (lb-in) 27562 53751 99949 60542 47506 121909 Ie3 (in4)614 614 358 614 614 268 M4 (lb-in) 27562 53751 100267 60542 47506 123123 Ie4 (in4)614 614 356 614 614 264 M5 (lb-in) 27562 53751 100329 60542 47506 123447 Ie5 (in4)614 614 356 614 614 264 M6 (lb-in) 27562 53751 100342 60542 47506 123534 Ie6 (in4)614 614 356 614 614 263 M7 (lb-in) 27562 53751 100344 60542 47506 123557 Ie7 (in4)614 614 356 614 614 263 l c / 150 (in)2.8 2.8 2.8 2.8 2.8 2.8 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.20 0.40 1.29 0.45 0.35 E+S is N/A OK OK OK OK OK OK OKA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7EA=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WU=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5* Job Name = Job Number = Wall Type = Wall Description = Wall Ht =35 ft Wall Weight at Mid Height b =34 ft Wt of Concrete=150 pcf c =12 ft Wall Thickness=9.25 in. e =5.50 ft Concentric Load=7326 plf d =23 ft Seismic Fp=.4Sd*=0.3412 Wp a =17 ft a = b/2 Roof Weight Joist Span=60 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =12 psf Live Floor=0 psf eccentricity 6 inch equiv DL =1472.7273 plf equiv SL =3068.1818 plf c equiv Lr =1472.7273 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =39.5 psf P wind equiv =89.6 psf P seismic equiv =134.4 psf Equivalent Wind and Seismic Load IRG Greenline 2180307.2 49 9' 6" window-spandrel Page 1 Description Panel 49 Equivalent Moments Multi-Span Steel BeamRev: 580010 User: KW-0602298, Ver 5.8.0, 15-Jun-2007 (c)1983-2007 ENERCALC Engineering Software 2180307_irg.ecw:Calculations Scope : Title :Job # Description : Dsgnr:Date:11:03AM, 8 AUG 18 General Information Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Fy - Yield Stress Spans Considered Continuous Over Supports 36.00 ksi Load Duration Factor 1.00 Span Information SeismicDescription Wind wind wind Span ft 3.00 35.00 3.00 35.00 5.00 Steel Section W8X24 W8X24 W8X24 W8X24 W8X24 Pin-Pin Pin-Pin Pin-Pin Pin-Pin Pin-Free 0.00ft 0.00 0.00 0.00 0.00Unbraced Length End Fixity Loads Live Load Used This Span ?Yes Yes Yes Yes Yes 0.134 0.134 0.090 0.090 -0.022Dead Load k/ft Live Load k/ft Results 0.00 12.15 0.00 8.28 0.00Mmax @ Cntr k-ft @ X =ft 0.00 21.47 0.00 21.70 0.00 Max @ Left End 0.00 -18.91 0.00 -12.83 0.27k-ft Max @ Right End -18.91 0.00 -12.83 0.27 0.00k-ft fb : Actual 10,880.0 10,880.0 7,380.3 7,380.3 158.2 Fb : Allowable psi 23,760.0 23,760.0 23,760.0 23,760.0 23,760.0 Bending OK Bending OK Bending OK 1,485.1fv : Actual 3,348.0 56.6 2,270.4 1,003.4 14,400.0 psi 14,400.0 14,400.0Fv : Allowable 14,400.0 14,400.0psi Bending OK Bending OK psi Reactions & Deflections 6.10 2.89 4.14 1.95 0.11Shear @ Left k Shear @ Right k 6.50 1.80 4.41 1.20 0.00 Reactions... DL @ Left k -6.10 9.39 -4.14 6.36 1.09 LL @ Left k 0.00 0.00 0.00 0.00 0.00 Total @ Left DL @ Right LL @ Right Total @ Right k -6.10 9.39 -4.14 6.36 1.09 k 9.39 1.80 6.36 1.09 0.00 k 0.00 0.00 0.00 0.00 0.00 k 9.39 1.80 6.36 1.09 0.00 Max. Deflection in 0.008 -0.867 0.005 -0.591 0.325 @ X =ft 1.74 19.83 1.74 19.83 5.00 Span/Deflection Ratio 4,634.6 484.4 6,831.4 710.2 369.0 Query Values 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Locationft Shear k 6.10 2.89 0.00 4.14 1.95 0.11 0.00 0.00 Moment 0.00 -18.91 0.00 0.00 -12.83 0.27 0.00 0.00k-ft 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000Max. Deflection in Alternate Concrete Slender Wall Design (ACI 318-11 Sect 11.8) Job Name = Job Number = 2180307.20 Wall Type =49 Wall Description = 35 38 9.25 0.75 8.5 5.50 D = Dead Load 5000 S = Snow Load (2) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 4'' o.c. H = Soil Load L / 183 E = Seismic Load (Ultimate)96% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)7326 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)6 Dead - D (plf) 1472.727273 D =736 D =368 Snow - S (plf) 3068.181818 S =1534 S =767 Roof Live - Lr (plf) 1472.727273 Lr =736 Lr =368 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)1760 0 D =880 Snow - S (lb-ft/ft)880 0 S =440 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)0 -18900 E =-9450 Wind - W (lb-ft/ft)0 -12800 W =-6400 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)134.4 E =20581 Wind - W (psf)89.6 W =13719 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)11169 Dead - D (lb-ft/ft)1248 Snow - S (plf)3068 Snow - S (lb-ft/ft)1207 Roof Live - Lr (plf)1473 Roof Live - Lr (lb-ft/ft)368 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)11131 Wind - W (lb-ft/ft)7319 Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) 9' 6" window-spandrel DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK 18.00 Reinforcement Max Deflection % of Flexural Capacity The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 11.8.2 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB Wall Parameters Wall Height Between Supports (ft)35 (Not including parapet) Parapet Height (ft)3 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)38 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)9.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)8.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?2 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)3.667 OK As per foot (in2/ft)1.00 (This is the area of tension steel only) Total As in Pier (in2)1.00 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)3.27 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.5 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)6.3 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0181 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.27 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.25 OK r 0.0133 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)102 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)420 = Wall Ht * 12 b1 0.8 Ig (in4/ft)614 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)4.25 = Struc Thk / 2 Mcr (lb-in)76633 = fr * Ig / yt l c / 150 (in)2.8 OK Job Name =IRG Greenline Job Number =2180307.2 Wall Type =49 Wall Description =9' 6" window-spandrel Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. *ASCE 7-10 IBC-2015 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft) 15637 14937 18312 18312 14937 17457 10053 8147 Factored Applied Moment at Mid Ht = Mua (lb-in/ft) 20969 25216 41149 85061 113039 164243 101304 144500 Pu / Ag (psi)153 146 180 180 146 171 99 80 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 1.18 1.17 1.21 1.21 1.17 1.20 1.12 1.10 a (in) =(Ase*fy) / (0.85*fc*lw)1.39 1.38 1.42 1.42 1.38 1.41 1.31 1.29 CU = C ULTIMATE = a /b1 1.73 1.72 1.78 1.78 1.72 1.76 1.64 1.61 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 198.73 198.02 201.39 201.39 198.02 200.54 192.97 190.94 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =40195 46570 92001 190179 208764 348801 148246 195101 Mn (lb-in) = Ase * fy * (d - a/2) 397616 395293 406454 406454 395293 403633 378959 372530 Cu / d 0.27 0.27 0.28 0.28 0.27 0.28 0.26 0.26 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)357854 355764 365809 365809 355764 363270 341063 335277 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 11%13%25%52%59%96%43%58%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Job Number =2E+06 Wall Type =49 Wall Description =9' 6" window-spandrel D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft) 14238 11169 11169 12704 14238 14238 Applied Moment at Mid Ht = Msa (lb-in/ft) 29463 67672 108481 74914 55810 122965 Ase (in2) = (Ps + As*fy) / fy 1.24 1.19 1.19 1.22 1.24 1.24 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.352 0.352 0.352 0.352 0.352 0.352 CE = C ELASTIC = k * d 2.22 2.22 2.22 2.22 2.22 2.22 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 193.35 187.19 187.19 190.27 193.35 193.35 M1 = Msa (lb-in) 29463 67672 108481 74914 55810 122965 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 614 614 338 614 614 295 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))32945 73791 127743 82715 62406 157624 Ie2 (in4)614 614 279 527 614 242 M3 (lb-in) 32945 73791 132662 84157 62406 168111 Ie3 (in4)614 614 269 510 614 233 M4 (lb-in) 32945 73791 133755 84505 62406 170390 Ie4 (in4)614 614 267 506 614 232 M5 (lb-in) 32945 73791 133989 84589 62406 170839 Ie5 (in4)614 614 267 505 614 231 M6 (lb-in) 32945 73791 134038 84610 62406 170926 Ie6 (in4)614 614 267 505 614 231 M7 (lb-in) 32945 73791 134049 84615 62406 170943 Ie7 (in4)614 614 267 505 614 231 l c / 150 (in)2.8 2.8 2.8 2.8 2.8 2.8 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.24 0.55 2.29 0.76 0.46 E+S is N/A OK OK OK OK OK OK OKA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7EA=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WU=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5* Job Name = Job Number = Wall Type = Wall Description = Wall Ht =35 ft Wall Weight at Mid Height b =20 ft Wt of Concrete=150 pcf c =23 ft Wall Thickness=9.25 in. e =3.00 ft Concentric Load=7901 plf d =12 ft Seismic Fp=.4Sd*=0.3412 Wp a =10 ft a = b/2 Roof Weight Joist Span=60 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =12 psf Live Floor=0 psf eccentricity 6 inch equiv DL =1560 plf equiv SL =3250 plf c equiv Lr =1560 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =39.5 psf P wind equiv =94.9 psf P seismic equiv =81.9 psf Equivalent Wind and Seismic Load IRG Greenline 2180307.2 52 spandrel Opening Page 1 Description Panel 52 Equivalent Moments Multi-Span Steel BeamRev: 580010 User: KW-0602298, Ver 5.8.0, 15-Jun-2007 (c)1983-2007 ENERCALC Engineering Software 2180307_irg.ecw:Calculations Scope : Title :Job # Description : Dsgnr:Date:11:03AM, 8 AUG 18 General Information Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Fy - Yield Stress Spans Considered Continuous Over Supports 36.00 ksi Load Duration Factor 1.00 Span Information SeismicDescription Wind wind wind Span ft 3.00 35.00 3.00 35.00 5.00 Steel Section W8X24 W8X24 W8X24 W8X24 W8X24 Pin-Pin Pin-Pin Pin-Pin Pin-Pin Pin-Free 0.00ft 0.00 0.00 0.00 0.00Unbraced Length End Fixity Loads Live Load Used This Span ?Yes Yes Yes Yes Yes 0.082 0.082 0.095 0.095 -0.022Dead Load k/ft Live Load k/ft Results 0.00 7.44 0.00 8.74 0.00Mmax @ Cntr k-ft @ X =ft 0.00 21.47 0.00 21.70 0.00 Max @ Left End 0.00 -11.57 0.00 -13.53 0.27k-ft Max @ Right End -11.57 0.00 -13.53 0.27 0.00k-ft fb : Actual 6,657.9 6,657.9 7,786.3 7,786.3 158.2 Fb : Allowable psi 23,760.0 23,760.0 23,760.0 23,760.0 23,760.0 Bending OK Bending OK Bending OK 908.8fv : Actual 2,048.8 56.6 2,395.3 1,058.8 14,400.0 psi 14,400.0 14,400.0Fv : Allowable 14,400.0 14,400.0psi Bending OK Bending OK psi Reactions & Deflections 3.73 1.77 4.37 2.06 0.11Shear @ Left k Shear @ Right k 3.98 1.10 4.65 1.27 0.00 Reactions... DL @ Left k -3.73 5.75 -4.37 6.71 1.16 LL @ Left k 0.00 0.00 0.00 0.00 0.00 Total @ Left DL @ Right LL @ Right Total @ Right k -3.73 5.75 -4.37 6.71 1.16 k 5.75 1.10 6.71 1.16 0.00 k 0.00 0.00 0.00 0.00 0.00 k 5.75 1.10 6.71 1.16 0.00 Max. Deflection in 0.005 -0.531 0.006 -0.624 0.343 @ X =ft 1.74 19.83 1.74 19.83 5.00 Span/Deflection Ratio 7,573.6 791.5 6,475.3 673.3 350.2 Query Values 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Locationft Shear k 3.73 1.77 0.00 4.37 2.06 0.11 0.00 0.00 Moment 0.00 -11.57 0.00 0.00 -13.53 0.27 0.00 0.00k-ft 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000Max. Deflection in Alternate Concrete Slender Wall Design (ACI 318-11 Sect 11.8) Job Name = Job Number = 2180307.20 Wall Type =52 Wall Description = 35 38 9.25 0.75 8.5 3.00 D = Dead Load 5000 S = Snow Load (2) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 5'' o.c. H = Soil Load L / 777 E = Seismic Load (Ultimate)76% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)7901 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)6 Dead - D (plf)1560 D =780 D =390 Snow - S (plf)3250 S =1625 S =813 Roof Live - Lr (plf)1560 Lr =780 Lr =390 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)0 -11600 E =-5800 Wind - W (lb-ft/ft)0 -13500 W =-6750 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)81.9 E =12541 Wind - W (psf)94.9 W =14532 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)11831 Dead - D (lb-ft/ft)390 Snow - S (plf)3250 Snow - S (lb-ft/ft)813 Roof Live - Lr (plf)1560 Roof Live - Lr (lb-ft/ft)390 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)6741 Wind - W (lb-ft/ft)7782 Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) spandrel Opening DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK 8.00 Reinforcement Max Deflection % of Flexural Capacity The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 11.8.2 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB Wall Parameters Wall Height Between Supports (ft)35 (Not including parapet) Parapet Height (ft)3 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)38 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)9.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)8.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?2 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)4.5 OK As per foot (in2/ft)0.82 (This is the area of tension steel only) Total As in Pier (in2)0.82 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)2.67 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.5 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)6.3 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0147 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.27 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.25 OK r 0.0108 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)102 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)420 = Wall Ht * 12 b1 0.8 Ig (in4/ft)614 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)4.25 = Struc Thk / 2 Mcr (lb-in)76633 = fr * Ig / yt l c / 150 (in)2.8 OK Job Name =IRG Greenline Job Number =2180307.2 Wall Type =52 Wall Description =spandrel Opening Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. *ASCE 7-10 IBC-2015 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft) 16564 15823 19398 19398 15823 18491 10648 8630 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)6552 10491 21216 67905 103870 94134 97591 84309 Pu / Ag (psi)162 155 190 190 155 181 104 85 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 1.00 1.00 1.04 1.04 1.00 1.03 0.94 0.91 a (in) =(Ase*fy) / (0.85*fc*lw)1.18 1.17 1.22 1.22 1.17 1.21 1.10 1.08 CU = C ULTIMATE = a /b1 1.48 1.46 1.52 1.52 1.46 1.51 1.38 1.35 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 181.82 180.95 185.08 185.08 180.95 184.05 174.70 172.16 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =14683 22394 58460 187111 221718 241814 155032 121256 Mn (lb-in) = Ase * fy * (d - a/2) 344685 342122 354439 354439 342122 351326 324092 316995 Cu / d 0.23 0.23 0.24 0.24 0.23 0.24 0.22 0.21 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)310217 307910 318995 318995 307910 316194 291683 285295 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 5%7%18%59%72%76%53%43%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Job Number =2E+06 Wall Type =52 Wall Description =spandrel Opening D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft) 15081 11831 11831 13456 15081 15081 Applied Moment at Mid Ht = Msa (lb-in/ft) 14430 60707 61307 65582 42444 71057 Ase (in2) = (Ps + As*fy) / fy 1.07 1.02 1.02 1.04 1.07 1.07 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.324 0.324 0.324 0.324 0.324 0.324 CE = C ELASTIC = k * d 2.05 2.05 2.05 2.05 2.05 2.05 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 174.33 167.24 167.24 170.79 174.33 174.33 M1 = Msa (lb-in) 14430 60707 61307 65582 42444 71057 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 614 614 614 614 614 614 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))16249 66553 67210 72861 47795 80015 Ie2 (in4)614 614 614 614 614 561 M3 (lb-in) 16249 66553 67210 72861 47795 80988 Ie3 (in4)614 614 614 614 614 547 M4 (lb-in) 16249 66553 67210 72861 47795 81274 Ie4 (in4)614 614 614 614 614 543 M5 (lb-in) 16249 66553 67210 72861 47795 81358 Ie5 (in4)614 614 614 614 614 542 M6 (lb-in) 16249 66553 67210 72861 47795 81383 Ie6 (in4)614 614 614 614 614 542 M7 (lb-in) 16249 66553 67210 72861 47795 81390 Ie7 (in4)614 614 614 614 614 541 l c / 150 (in)2.8 2.8 2.8 2.8 2.8 2.8 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.12 0.49 0.50 0.54 0.35 E+S is N/A OK OK OK OK OK OK OKA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7EA=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WU=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5*