Loading...
21-100325-Structural Calculations-01-29-2021-V1Civil Engineers ● Structural Engineers ● Landscape Architects ● Community Planners ● Land Surveyors ● Neighbors Structural Calculations PREPARED FOR: Craft Architects 2505 Third Ave Seattle, WA 98121 PROJECT: IRG Greenline Building B 2200672.20 PREPARED BY: Larry Higgins PE Sr. Engineer REVIEWED BY: Danial L. Booth PE SE Principal DATE: January 2021 Structural Calculations For IRG Greenline Building B Federal Way, WA Project # 2200672.20 Project Principal Danial L. Booth PE SE Sr. Engineer Larry Higgins PE Design Criteria Design Codes and Standards Codes and Standards: Structural design and construction shall be in accordance with the applicable sections of the following codes and standards as adopted and amended by the local building authority: International Building Code, 2015 Edition. Structural Design Criteria: Live Load Criteria: Roof (Min Blanket Snow)25 psf Slab on Grade 250 psf Wind Load Criteria: Ultimate Wind Speed 110 mph Risk Category II Wind Exposure B Topographic Factor 1.0 Seismic Criteria: Risk Category II Seismic Importance Factor 1.0 Ss = 1.279 S1 = 0.491 Sds = 0.853 Sd1 = 0.428 Site Class = C Seismic Design Category = D Response Modification Coeff. (R): 5.0 Seismic Response Coeff. (Cs): 0.171 01/22/2021 IRG Bldg B 2200672.20 2 Soil Criteria: Based on Geotechnical Engineering Report by: GeoEngineers, dated June 21, 2018. Allowable Soil Bearing Capacity: 4000psf, allow 33% increase for loads from wind or seismic origin. Active Earth Pressure = 35pcf (un-restrained) / 55pcf (restrained Friction Coefficient = 0.35 (SF=1.5) Passive Pressure = 300psf (SF=1.5) Project Description The project consists of standard single loaded concrete tilt warehouse/distribution building. The walls consist of concrete tilt bearing walls, steel joist and joist girders, wood purlins and plywood sheathed roof. IRG Bldg B 2200672.20 3 Design Maps Summary Report Report Title Building Code Reference Document Site Coordinates Site Soil Classification Risk Category User–Specified Input IRG Greenline Tue June 12, 2018 17:25:23 UTC ASCE 7-10 Standard (which utilizes USGS hazard data available in 2008) 47.29909°N, 122.29457°W Site Class C – “Very Dense Soil and Soft Rock” I/II/III USGS–Provided Output SS =1.279 g SMS =1.279 g SDS =0.853 g S1 =0.491 g SM1 =0.643 g SD1 =0.428 g For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the “2009 NEHRP” building code reference document. For PGAM, TL, CRS, and CR1 values, please view the detailed report. Page 1 of 2Design Maps Summary Report 6/12/2018https://prod02-earthquake.cr.usgs.gov/designmaps/us/summary.php?template=minimal&la... IRG Bldg B 2200672.20 4 Company JOB TITLE IRG Greenline Bldg B Address City, State JOB NO.2200672.20 SHEET NO. Phone CALCULATED BY Larry Higgins PE DATE 1/19/21 CHECKED BY DATE www.struware.com Code Search Code: Occupancy: Occupancy Group =S Risk Category & Importance Factors: Risk Category =II Wind factor =1.00 Snow factor =1.00 Seismic factor =1.00 Type of Construction: Fire Rating: Roof =0.0 hr Floor =0.0 hr Building Geometry: Roof angle (θ)0.25 / 12 1.2 deg Building length (L)680.0 ft Least width (B)360.0 ft Mean Roof Ht (h)36.5 ft Parapet ht above grd 40.0 ft Minimum parapet ht 3.0 ft Live Loads: Roof 0 to 200 sf: 20 psf 200 to 600 sf: 24 - 0.02Area, but not less than 12 psf over 600 sf: 12 psf Floor: Typical Floor 40 psf Partitions 15 psf Lobbies & first floor corridors 100 psf Corridors above first floor 80 psf Balconies (exterior) - same as occupancy 40 psf International Building Code 2015 Storage IRG Bldg B 2200672.20 5 Company JOB TITLE IRG Greenline Bldg B Address City, State JOB NO.2200672.20 SHEET NO. Phone CALCULATED BY Larry Higgins PE DATE 1/19/21 CHECKED BY DATE Wind Loads :ASCE 7- 10 Ultimate Wind Speed 110 mph Nominal Wind Speed 85.2 mph Risk Category II Exposure Category B Enclosure Classif.Enclosed Building Internal pressure +/-0.18 Directionality (Kd)0.85 Kh case 1 0.741 Kh case 2 0.741 Type of roof Monoslope Topographic Factor (Kzt) Topography Flat Hill Height (H)80.0 ft Half Hill Length (Lh)100.0 ft Actual H/Lh =0.80 Use H/Lh =0.50 Modified Lh =160.0 ft From top of crest: x =50.0 ft Bldg up/down wind?downwind H/Lh= 0.50 K1 =0.000 x/Lh = 0.31 K2 =0.792 z/Lh = 0.23 K3 =1.000 At Mean Roof Ht: Kzt = (1+K1K2K3)^2 =1.00 Gust Effect Factor Flexible structure if natural frequency < 1 Hz (T > 1 second). h =36.5 ft If building h/B>4 then may be flexible and should be investigated. B =360.0 ft h/B = 0.10 Rigid structure (low rise bldg) /z (0.6h) =30.0 ft G =0.85 Using rigid structure default Rigid Structure Flexible or Dynamically Sensitive Structure ē =0.33 34Natural Frequency (η1) =0.0 Hz ℓ =320 ft Damping ratio (β) =0zmin =30 ft /b =0.45 c =0.30 /α =0.25 gQ,gv =3.4 Vz =70.9 Lz =310.0 ft N1 =0.00 Q =0.76 Rn =0.000 Iz =0.30 Rh =28.282 η =0.000 h =36.5 ft G =0.78 RB =28.282 η =0.000 RL =28.282 η =0.000 gR =0.000 R =0.000 Gf =0.000 Enclosure Classification IRG Bldg B 2200672.20 6 Company JOB TITLE IRG Greenline Bldg B Address City, State JOB NO.2200672.20 SHEET NO. Phone CALCULATED BY Larry Higgins PE DATE 1/19/21 CHECKED BY DATE Wind Loads - MWFRS h≤60' (Low-rise Buildings) except for open buildings Kz = Kh (case 1) =0.74 Edge Strip (a) =14.6 ft Base pressure (qh) =19.5 psf End Zone (2a) =29.2 ft GCpi =+/-0.18 Zone 2 length =91.3 ft Wind Pressure Coefficients CASE A CASE B Surface GCpf w/-GCpi w/+GCpi GCpf w/-GCpi w/+GCpi 1 0.40 0.58 0.22 -0.45 -0.27 -0.63 2 -0.69 -0.51 -0.87 -0.69 -0.51 -0.87 3 -0.37 -0.19 -0.55 -0.37 -0.19 -0.55 4 -0.29 -0.11 -0.47 -0.45 -0.27 -0.63 5 0.40 0.58 0.22 6 -0.29 -0.11 -0.47 1E 0.61 0.79 0.43 -0.48 -0.30 -0.66 2E -1.07 -0.89 -1.25 -1.07 -0.89 -1.25 3E -0.53 -0.35 -0.71 -0.53 -0.35 -0.71 4E -0.43 -0.25 -0.61 -0.48 -0.30 -0.66 5E 0.61 0.79 0.43 6E -0.43 -0.25 -0.61 Ultimate Wind Surface Pressures (psf) 1 11.3 4.3 -5.3 -12.3 2 -9.9 -17.0 -9.9 -17.0 3 -3.7 -10.7 -3.7 -10.7 4 -2.1 -9.2 -5.3 -12.3 5 11.3 4.3 6 -2.1 -9.2 1E 15.4 8.4 -5.9 -12.9 2E -17.4 -24.4 -17.4 -24.4 3E -6.8 -13.9 -6.8 -13.9 4E -4.9 -11.9 -5.9 -12.9 5E 15.4 8.4 6E -4.9 -11.9 Parapet Windward parapet =30.0 psf (GCpn = +1.5)Windward roof Leeward parapet =-20.0 psf (GCpn = -1.0)overhangs =13.7 psf (upward) add to windward roof pressure Horizontal MWFRS Simple Diaphragm Pressures (psf) Transverse direction (normal to L) Interior Zone: Wall 13.5 psf Roof -6.2 psf ** End Zone: Wall 20.3 psf Roof -10.5 psf ** Longitudinal direction (parallel to L) Interior Zone: Wall 13.5 psf End Zone: Wall 20.3 psf ** NOTE: Total horiz force shall not be less than that determined by neglecting roof forces (except for MWFRS moment frames). The code requires the MWFRS be designed for a min ultimate force of 16 psf multiplied by the wall area plus an 8 psf force applied to the vertical projection of the roof. θ = 1.2 deg SEISMIC CONTROLS IRG Bldg B 2200672.20 7 Company JOB TITLE IRG Greenline Bldg B Address City, State JOB NO.2200672.20 SHEET NO. Phone CALCULATED BY Larry Higgins PE DATE 1/19/21 CHECKED BY DATE NOTE: Torsional loads are 25% of zones 1 - 6. See code for loading diagram. Exception: One story buildings h<30' and 1 to 2 storybuildings framed with light-frame construction or with flexible diaphragms need not be designed for the torsional load case. NOTE: Torsional loads are 25% of zones 1 - 4. See code for loading diagram. Exception: One story buildings h<30' and 1 to 2 storybuildings framed with light-frame construction or with flexible diaphragms need not be designed for the torsional load case. ASCE 7-98 & ASCE 7-10 (& later) - MWFRS wind pressure zones ASCE 7-02 and ASCE 7-05 - MWFRS wind pressure zones IRG Bldg B 2200672.20 8 Company JOB TITLE IRG Greenline Bldg B Address City, State JOB NO.2200672.20 SHEET NO. Phone CALCULATED BY Larry Higgins PE DATE 1/19/21 CHECKED BY DATE Ultimate Wind Pressures Wind Loads - Components & Cladding : h ≤ 60' Kh (case 1) =0.74 h =36.5 ft Base pressure (qh) =19.5 psf a =14.6 ft Minimum parapet ht =3.0 ft GCpi =+/-0.18 Roof Angle (θ) =1.2 deg Type of roof = Monoslope Roof GCp +/- GCpi Surface Pressure (psf)User input Area 10 sf 50 sf 100 sf 500 sf 10 sf 50 sf 100 sf 500 sf 25 sf 50 sf Negative Zone 1 -1.18 -1.11 -1.08 -1.08 -23.0 -21.7 -21.1 -21.1 -22.2 -21.7 Negative Zone 2 -1.98 -1.49 -1.28 -1.28 -38.6 -29.1 -25.0 -25.0 -33.2 -29.1 Negative Zone 3 -1.98 -1.49 -1.28 -1.28 -38.6 -29.1 -25.0 -25.0 -33.2 -29.1 Positive Zone 1 0.48 0.41 0.38 0.38 16.0 16.0 16.0 16.0 16.0 16.0 Positive Zones 2 & 3 1.08 0.97 0.92 0.81 21.1 18.9 17.9 16.0 19.8 18.9 Overhang Zone 1&2 -1.7 -1.63 -1.6 -1.1 -33.2 -31.8 -31.2 -21.5 -32.4 -31.8 Overhang Zone 3 -1.7 -1.63 -1.6 -1.1 -33.2 -31.8 -31.2 -21.5 -32.4 -31.8 Negative zone 3 = zone 2, since parapet >= 3ft. Overhang pressures in the table above assume an internal pressure coefficient (Gcpi) of 0.0 Overhang soffit pressure equals adj wall pressure (which includes internal pressure of 3.5 psf) Parapet qp =20.0 psf Surface Pressure (psf)User input Solid Parapet Pressure 10 sf 20 sf 50 sf 100 sf 200 sf 500 sf 50 sf CASE A: Zone 2 :54.1 48.9 42.0 36.9 35.9 34.6 42.0 Zone 3 :54.1 48.9 42.0 36.9 35.9 34.6 42.0 CASE B: Edge zones 2 :-37.9 -35.9 -33.4 -31.5 -29.6 -27.0 -33.4 Corner zones 3 :-43.3 -40.4 -36.6 -33.7 -30.8 -27.0 -36.6 Walls GCp +/- GCpi Surface Pressure (psf) Area 10 sf 100 sf 200 sf 500 sf 10 sf 100 sf 200 sf 500 sf 10 sf 200 sf Negative Zone 4 -1.17 -1.01 -0.96 -0.90 -22.8 -19.7 -18.8 -17.6 -22.8 -18.8 Negative Zone 5 -1.44 -1.12 -1.03 -0.90 -28.1 -21.9 -20.0 -17.6 -28.1 -20.0 Positive Zone 4 & 5 1.08 0.92 0.87 0.81 21.1 18.0 17.0 16.0 21.1 17.0 Note: GCp reduced by 10% due to roof angle <= 10 deg. User input USED FOR TILT PANEL DESIGN IRG Bldg B 2200672.20 9 Company JOB TITLE IRG Greenline Bldg B Address City, State JOB NO.2200672.20 SHEET NO. Phone CALCULATED BY Larry Higgins PE DATE 1/19/21 CHECKED BY DATE Location of C&C Wind Pressure Zones - ASCE 7-10 & earlier Roofs w/ θ ≤ 10°Walls h ≤ 60'Gable, Sawtooth and and all walls & alt design h<90'Multispan Gable θ ≤7 degrees &Monoslope roofs h > 60'Monoslope ≤ 3 degrees 3° < θ ≤ 10° h ≤ 60' & alt design h<90'h ≤ 60' & alt design h<90' Monoslope roofs Multispan Gable &Hip 7° < θ ≤ 27° 10° < θ ≤ 30°Gable 7°< θ ≤ 45° h ≤ 60' & alt design h<90' Sawtooth 10° < θ ≤ 45° h ≤ 60' & alt design h<90' Stepped roofs θ ≤ 3° h ≤ 60' & alt design h<90' IRG Bldg B 2200672.20 10 Project _______________________________ Project No. __________________________ Subject _______________________________ Phone ______________________________ With/To _______________________________ Fax # _______________________________ Address _______________________________ # Faxed Pages _______________________ Date __________________________________ By _________________________________ 2015 IBC SEISMIC LOADS / ASCE 7-10…EQUIVALENT STATIC FORCE PROCEDURE All References to ASCE 7-10 unless noted otherwise BUILDING STRUCTURAL SYSTEM: Table 12.2-1 A1. Special Reinforced Concrete Shear Walls (PC & CIP) RISK CATEGORY II Section 1.5 SITE CLASS C Section 11.4 BUILDING HEIGHT (ft)38 Diaphragm=F R=Rigid F=Flexible SHORT PERIOD SPECTRAL Ss 1.279 Chapter 22 http://earthquake.usgs.gov/research/hazmaps/design/ 1 SECOND PERIOD SPECTRAL S 0.491 Chapter 22 DESIGN CATEGORY =D TABLE 11.6-1 or 11.6-2 HEIGHT LIMIT CATG. D/E/F=160/160/100 Fa=1.00 Table 11.4-1 Fv=1.31 Table 11.4-2 DESIGN BASE SHEAR % g I =1.00 Table 11.5-1 Cs 0.171 Section 12.8 Equation 12.8-2 R =5.00 Table 12-2-1 MAX-1 0.280 Section 12.8 Equation 12.8-3 T =0.31 Section 12.8.2.1 MIN - 1 0.010 Section 12.8 Equation 12.8-5 SMS=1.28 SDS=0.8527 MIN -2 0.010 Section 12.8 Equation 12.8-6 SM1 0.64 SDI=0.4285 MAX-2 T<TL Section 12.8 Equation 12.8-6 r =1.00 Section 12.3.4 QE = V =0.171 x W Wo =2.50 Table 12-2-1 W =2.00 Table 12.2-1 NOTE G (except Cantilever Column Systems) MINIMUM DESIGN LATERAL FORCES BASED ON STRENGTH DESIGN Eh=rQE =0.171 x W E =rQE EQ 12.4-3 E v =0.171 x DEAD LOAD Ev = +/- 0.2xSDSxD EQ 12.4-4 E mh=0.341 x W EQ 12.4-7 EQ16-52/53 FOR ASD (0.7 x Q E ) rE =0.119 x W 1605.3.1 2200672_2015IBC_SEISMIC.xlsx IRG Bldg B 2200672.20 11 Project __________________________________Project No. _______________________________ Subject __________________________________Phone ___________________________________ With/To __________________________________Fax # ____________________________________ Address _________________________________# Faxed Pages ____________________________ Date ____________________________________By ______________________________________ 2015 IBC / ASCE 7-10 VERTICAL DISTRIBUTION OF SEISMIC FORCES EQUIVALENT LATERAL FORCE METHOD E/W N/S E/W N/S E/W N/S HORIZONTAL FORCE AT EACH LEVEL LEVEL DL TRIB AREA DL (WALL)TRIB. LENGTHTRIB. LENGTHE/W -- WxN/S -- WX Hs Hx W X HxK WxHxK %%Eh 0.7*Eh ALLOW. PSF ft X ft PSF FT FT K ft ft E/W N/S E/W N/S 1 12 215,650 119 1,359 820 5903 4588 41.0 41 242026 188116 1.000 1.000 1006.7 782.4 704.7 547.7 Kip 1st FLOOR 2 0 0 0 0 0 0 0 0.0 41 0 0 0.0 0.0 0.0 0.0 Kip 2nd FLOOR 3 0 0 0 0 0 0 0 0.0 41 0 0 0.0 0.0 0.0 0.0 Kip 3rd FLOOR 4 0 0 0 0 0 0 0 0.0 41 0 0 0.0 0.0 0.0 0.0 Kip 4th FLOOR 5 0 0 0 0 0 0 0 0.0 41 0 0 0.0 0.0 0.0 0.0 Kip 5th FLOOR 6 0 0 0 0 0 0 0 0.0 41 0 0 0.0 0.0 0.0 0.0 Kip 6th FLOOR 7 0 0 0 0 0 0 0 0.0 41 0 0 0.0 0.0 0.0 0.0 Kip 7th FLOOR 8 0 0 0 0 0 0 0 0.0 41 0 0 0.0 0.0 0.0 0.0 Kip 8th FLOOR 9 0 0 0 0 0 0 0 0.0 41 0 0 0.0 0.0 0.0 0.0 Kip 9th FLOOR 10 0 0 0 0 0 0 0 0.0 41 0 0 0.0 0.0 0.0 0.0 Kip 10th FLOOR SUM SUM SUM SUM WEIGHT OF BUILDING 5903 4588 242026 188116 Eh KIP KIP K=1 17.1 % OF DEAD LOAD 1007 782 T=0.31 ASD 679.5'' 310' 50x65 50' N 1.7668KLF 1.0371KLF IRG Bldg B2200672.2012 Diaphragm Chord& Splice Designer L ft =679.5 D ft =310 E1 (kips) =1006.7 E2 (kips) =782.4 Fy, Ksi =50 1st Bay 40 L Last Bay 40 679.5 FT D Width of Splice Plate, in =4.5 782.4 310 E2 KIPS FT 1006.7 KIPS E1 Walls Along 'L' LRFD LENGTH SPLICE PL GRID Station Load (K)Ag( in^2)T splice (in^2)5/16" weld LENGTH 2 39.75 60.77 1.35 0.30 8.7 10.7 3 65 95.45 2.12 0.47 13.7 15.7 4 137 177.60 3.95 0.88 25.5 27.5 5 187 220.07 4.89 1.09 31.6 33.6 L6x6x7/16 As=5.08 6 237 250.60 5.57 1.24 36.0 38.0 7 287 269.18 5.98 1.33 38.7 40.7 8 337 275.81 6.13 1.36 39.6 41.6 339.75 275.83 6.13 1.36 39.6 41.6 L6x6x9/16 As=6.45 Walls Along 'D' LRFD LENGTH SPLICE PL Station Load (K)Ag( in^2)T splice (in^2)5/16" weld LENGTH 0 0.00 0.00 0.00 0.0 2.0 60 31.57 0.70 0.16 4.5 6.5 110 46.31 1.03 0.23 6.7 8.7 155 50.57 1.12 0.25 7.3 9.3 USE GIRDER 2.5 IRG Bldg B 2200672.20 13 project ,izG 6tb` 8 Subject WithITo Address ProjectNo. Z2q} G7?,. 24 I page_of I Caloulations # Faxed Pages By L;I, s?|-lr ` Psoe.` 12Prf aDc 25T¢ 5;duz£2j#j C8c`, Loaptlc e@.Tj c.h 7;„,8-. €5'¥sD i 2.]{bsf I)L-33.a,( 9L16S.grl£ TL€ /b'.8k -obJ,ri 6 -- EFax I Memorandum I Meeting Minutes I Telephone Memo f ic fro,^£-. eypf i ~-5-,D/ f tyf, s'-S" Zeoirwc/ __-_L]IJ Ddffi Civil Engineers Structural Engineers Landscape Architects Community planners Land Surveyors fe€G¢r,,c Tj&€" 4.5S, ftkf fr¢ir~btr~ g 5,;x5,;xyKq£ = /1/z fbLbelG~ t-scc DLz 37lc- S|_- 8211 Gjfr w fuL i.,? 8! t8'-_ 4; i izf tTf - grD 4o @Lf @Dp egx ao4z5p -_ /I/z) ,LF 6lan fir _ fr%or,#" = fzJ®67~ -, 37'-ii; 7;of c>p gw/4 /3.S" ZZZ /5ict i ',{D4^ I /,€/ tisff- al -;` f a,, = 34'-9`/7" 'dystM`2iS` #oz,i;POLG C/~C/ ifgc WSS IDt{D+ii„ @gS' sz7 |2;HP %} >tol.fill OIL ft wf yng'` ,fa#!;i, ir{{8t8i/apt 3y' -_3 tr} .hvl 7 +I ¢] it 6u --.. ` ..----- I -.--` lf this does not meet with your understanding, please contact us in writing within seven days. THANK YOU. ef r¢,g= SJb >2iJ--liobSP f.?fl/ff 71D]L 3{fj'';~!f/23,-r3# IRG Bldg B 2200672.20 14 fry i,,4,"L4¥~fo AV%~ 2L,, Jb6W5 2ois' RE Ei in # Faxed Pages a-`ZI /9Sd fLf y-`. 27DbyLf 3g== /Mr/iof *7~ 227Y/if E page_of _ I Calculations EFax I Memorandum I Meeting Minutes I Telepho###, J o37.-, ?i LIIJDdffi Civil Engineers Structural Engineers a_271.8c2-l€ Landscape Architects €2]286#mmun,typjanners Land Surveyors rii44 LONb Dinpitih/ut %sfft 4x f4kNii %w5 /DI e }'f ¢t--z8gD ¢LF .?y 6r-IJ`,13L;.A g>Jp' 2flqu ioH @ {f a-ijboar (IIi€%ofA @;m4;i®,lyiit=Tii ./{1 bes,6, GttDd. 5rf¢uut-i %2Ii 3x /eo^ lode I I;L6c-9 Mo/'~)2D •)rtylJ) _ ,„c, = 126' C4.D |~7'*3" 3S2`35 - /.,37' 'C) ftF7;€n t2ID/- FTtry-+ z* ifu^ [OJ o,q';c'.>gb-a/zz = q23 >¢¢3D,c ?,?,sd3#nd:s,3d,|?p;please contact us in writing within Seven IRG Bldg B 2200672.20 15 ®,""#f,k#¢+ 3if¢flNofroL6arfs2} /D' ,2C, # Faxed Pages 9/P'/Z„{ /72d rla: = I){2# C4 © 22g,e= 2p,,oc L¢`-7y,;c 3 6D , cG, vnge 2cf c>t z,5€ 76 0( I page_of_ I Calculations EFax I Memorandum I Meeting Minutes I Telephone Memo ]/;`/xp`:a,,'-93b(,{o±r32Bzz Nitf,r" . #= ,,,8.;c Le{G ll':c grit Off L" yJ4u5 :::== Tj,€''ac Lrfe 2y'.g± fu`~ EEEE I lf this does not meet with your understanding, please contact us in writing within seven days. THANK YOU LIIJDdffi Civil Engineers Structural Engineers Landscape A`rohitects Community Planhers Land Surveyors IRG Bldg B 2200672.20 16 # Faxed Pages ##G¢ #G Dlf rrfi#f2Gq^ #AV#a2friGdy/ 7Ty,'cAI I page_of_ I Calculations EFax I Memorandum I Meeting Minutes I Telephone Memo L'IJDdffi Civil Engineers 7/y„ ulr=E¥+3,ti=XI'Iprsf=1fllnw •8{¢8f:s3bl.flulo € ,bY ul, A f /Oife5 , , vJhi i 3;fl -,,i." -de #± J,,,o" bet €,De bf rdD4 -',`` 2q,-a,/' RE f,-- /bb€'uf i 7//" ulp.,[%3f<.83E*gi,¢€2ifefc3 £,I ,3?8,uff --------- iff -' / Lb< fof SoyfsJs@ |D'a& =9 /L.JIL 5igoen. ajiti. a.-- S'€' (/,Wl)'- 9211 GC|b 2 -- 2:: ¢.w;S-. If2iy- 2 f,e M7| pcf S®oJ#ul8: ttie Y'„ , „y'/i,:¢f ro, Wulrdrf u:. ::«„ „ Llro To 44un -, ed4"sD Z' 11.bllvw *] < 1#)#1 bwoquir6O. @=l,154LF #f=L6b; f rfe 3o¢ lf this does not meet with your understanding, please contact us in writing within seven days. THANK +OU. Structural Engineers Landscape Architects Community planners Land Surveyors IRG Bldg B 2200672.20 17 General Footing Licensee : AHBL, INCLic. # : KW-06001735 Description :F5.0 AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:02AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . Code References Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : ASCE 7-10 General Information Material Properties Soil Design Values 4.0 Analysis Settings 250.0ksi No ksfAllowable Soil Bearing = = 3.0 60.0 3,122.0 145.0 =0.30 Flexure =0.90 Shear = ValuesM 0.00180 Soil Passive Resistance (for Sliding) 1.0 = Increases based on footing plan dimension Add Pedestal Wt for Soil Pressure No: Use Pedestal wt for stability, mom & shear No: Allowable pressure increase per foot of depth =ksfwhen max. length or width is greater than =ft : = Add Ftg Wt for Soil Pressure No Yes:Use ftg wt for stability, moments & shears when footing base is below ft pcf Increase Bearing By Footing Weight =pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus = =Footing base depth below soil surface ft =Allow press. increase per foot of depth ksf = : 11.0Min. Sliding Safety Factor = = Concrete Density = Min Allow % Temp Reinf. ksif'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. # Dimensions Width parallel to X-X Axis 5 ft Length parallel to Z-Z Axis = 5.0 ft =Pedestal dimensions... px : parallel to X-X Axis 12.0 in pz : parallel to Z-Z Axis 12.0 in Height == in Footing Thickness = 13.0 in= Rebar Centerline to Edge of Concrete...=inat Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 5 Number of Bars = 6 Bars parallel to Z-Z Axis Reinforcing Bar Size =5 Number of Bars =6 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 32 68.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = =k V-z k M-xx = k-ft= k-ft H = IRG Bldg B 2200672.20 18 General Footing Licensee : AHBL, INCLic. # : KW-06001735 Description :F5.0 AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:02AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . PASS n/a Sliding - X-X 0.0 k 0.0 k No Sliding PASS n/a Sliding - Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load CombinationMin. Ratio Item Applied Capacity PASS 1.0 Soil Bearing 4.0 ksf 4.0 ksf +D+S about Z-Z axis PASS n/a Overturning - X-X 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Overturning - Z-Z 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.7301 Z Flexure (+X)11.776 k-ft/ft 16.129 k-ft/ft +1.20D+1.60S PASS 0.7301 Z Flexure (-X)11.776 k-ft/ft 16.129 k-ft/ft +1.20D+1.60S PASS 0.7301 X Flexure (+Z)11.776 k-ft/ft 16.129 k-ft/ft +1.20D+1.60S PASS 0.7301 X Flexure (-Z)11.776 k-ft/ft 16.129 k-ft/ft +1.20D+1.60S PASS 0.6868 1-way Shear (+X)56.427 psi 82.158 psi +1.20D+1.60S PASS 0.6868 1-way Shear (-X)56.427 psi 82.158 psi +1.20D+1.60S PASS 0.6868 1-way Shear (+Z)56.427 psi 82.158 psi +1.20D+1.60S PASS 0.6868 1-way Shear (-Z)56.427 psi 82.158 psi +1.20D+1.60S PASS 0.8861 2-way Punching 145.594 psi 164.317 psi +1.20D+1.60S Detailed Results Rotation Axis &ZeccXecc Actual Soil Bearing Stress @ Location Actual / Allow Soil Bearing (in)Gross Allowable Bottom, -Z Top, +Z Left, -X Right, +X RatioLoad Combination... X-X, D Only 4.0 n/a1.280 1.280 n/a 0.3200.0n/a X-X, +D+S 4.0 n/a4.0 4.0 n/a 1.0000.0n/a X-X, +D+0.750S 4.0 n/a3.320 3.320 n/a 0.8300.0n/a X-X, +0.60D 4.0 n/a0.7680 0.7680 n/a 0.1920.0n/a Z-Z, D Only 4.0 1.280n/a n/a 1.280 0.320n/a0.0 Z-Z, +D+S 4.0 4.0n/a n/a 4.0 1.000n/a0.0 Z-Z, +D+0.750S 4.0 3.320n/a n/a 3.320 0.830n/a0.0 Z-Z, +0.60D 4.0 0.7680n/a n/a 0.7680 0.192n/a0.0 IRG Bldg B 2200672.20 19 General Footing Licensee : AHBL, INCLic. # : KW-06001735 Description :F5.5 AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:02AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . Code References Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : ASCE 7-10 General Information Material Properties Soil Design Values 4.0 Analysis Settings 250.0ksi No ksfAllowable Soil Bearing = = 3.0 60.0 3,122.0 145.0 =0.30 Flexure =0.90 Shear = ValuesM 0.00180 Soil Passive Resistance (for Sliding) 1.0 = Increases based on footing plan dimension Add Pedestal Wt for Soil Pressure No: Use Pedestal wt for stability, mom & shear No: Allowable pressure increase per foot of depth =ksfwhen max. length or width is greater than =ft : = Add Ftg Wt for Soil Pressure No Yes:Use ftg wt for stability, moments & shears when footing base is below ft pcf Increase Bearing By Footing Weight =pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus = =Footing base depth below soil surface ft =Allow press. increase per foot of depth ksf = : 11.0Min. Sliding Safety Factor = = Concrete Density = Min Allow % Temp Reinf. ksif'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. # Dimensions Width parallel to X-X Axis 5.5 ft Length parallel to Z-Z Axis = 5.50 ft =Pedestal dimensions... px : parallel to X-X Axis 12.0 in pz : parallel to Z-Z Axis 12.0 in Height == in Footing Thickness = 14.0 in= Rebar Centerline to Edge of Concrete...=inat Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 5 Number of Bars = 7 Bars parallel to Z-Z Axis Reinforcing Bar Size =5 Number of Bars =7 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 39.0 82.0 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x = =k V-z k M-xx = k-ft= k-ft H = IRG Bldg B 2200672.20 20 General Footing Licensee : AHBL, INCLic. # : KW-06001735 Description :F5.5 AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:02AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . PASS n/a Sliding - X-X 0.0 k 0.0 k No Sliding PASS n/a Sliding - Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load CombinationMin. Ratio Item Applied Capacity PASS 1.0 Soil Bearing 4.0 ksf 4.0 ksf +D+S about Z-Z axis PASS n/a Overturning - X-X 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Overturning - Z-Z 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.7904 Z Flexure (+X)14.895 k-ft/ft 18.843 k-ft/ft +1.20D+1.60S PASS 0.7904 Z Flexure (-X)14.895 k-ft/ft 18.843 k-ft/ft +1.20D+1.60S PASS 0.7904 X Flexure (+Z)14.895 k-ft/ft 18.843 k-ft/ft +1.20D+1.60S PASS 0.7904 X Flexure (-Z)14.895 k-ft/ft 18.843 k-ft/ft +1.20D+1.60S PASS 0.7162 1-way Shear (+X)58.843 psi 82.158 psi +1.20D+1.60S PASS 0.7162 1-way Shear (-X)58.843 psi 82.158 psi +1.20D+1.60S PASS 0.7162 1-way Shear (+Z)58.843 psi 82.158 psi +1.20D+1.60S PASS 0.7162 1-way Shear (-Z)58.843 psi 82.158 psi +1.20D+1.60S PASS 0.9467 2-way Punching 155.557 psi 164.317 psi +1.20D+1.60S Detailed Results Rotation Axis &ZeccXecc Actual Soil Bearing Stress @ Location Actual / Allow Soil Bearing (in)Gross Allowable Bottom, -Z Top, +Z Left, -X Right, +X RatioLoad Combination... X-X, D Only 4.0 n/a1.289 1.289 n/a 0.3220.0n/a X-X, +D+S 4.0 n/a4.0 4.0 n/a 1.0000.0n/a X-X, +D+0.750S 4.0 n/a3.322 3.322 n/a 0.8310.0n/a X-X, +0.60D 4.0 n/a0.7736 0.7736 n/a 0.1930.0n/a Z-Z, D Only 4.0 1.289n/a n/a 1.289 0.322n/a0.0 Z-Z, +D+S 4.0 4.0n/a n/a 4.0 1.000n/a0.0 Z-Z, +D+0.750S 4.0 3.322n/a n/a 3.322 0.831n/a0.0 Z-Z, +0.60D 4.0 0.7736n/a n/a 0.7736 0.193n/a0.0 IRG Bldg B 2200672.20 21 Steel Beam Licensee : AHBL, INCLic. # : KW-06001735 Description :Wind Girt 24' span - Dead Load AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:02AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . CODE REFERENCES Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set : ASCE 7-10 Material Properties Analysis Method : ksi Bending Axis :Minor Axis Bending Beam is Fully Braced against lateral-torsional buckling Allowable Strength Design Fy : Steel Yield :46.0 ksi Beam Bracing :E: Modulus :29,000.0 .Service loads entered. Load Factors will be applied for calculations.Applied Loads Beam self weight calculated and added to loading Load for Span Number 1 Uniform Load : D = 0.060 k/ft, Tributary Width = 1.0 ft Load for Span Number 2 Uniform Load : D = 0.060 k/ft, Tributary Width = 1.0 ft Point Load : D = 0.60 k @ 6.0 ft .Design OKDESIGN SUMMARY Maximum Bending Stress Ratio =0.116 : 1 Load Combination D Only Span # where maximum occurs Span # 1 Location of maximum on span 24.000 ft 1.330 k Mn / Omega : Allowable 45.449 k-ft Vn/Omega : Allowable HSS8x6x3/8Section used for this span Span # where maximum occurs Location of maximum on span Span # 1 Load Combination D Only 57.137 k Section used for this span HSS8x6x3/8 Ma : Applied Maximum Shear Stress Ratio =0.023 : 1 24.000 ft 5.266 k-ft Va : Applied 0 <360 1136 Ratio =8199 >=240 Maximum Deflection Max Downward Transient Deflection 0.000 in 0Ratio =<360 Max Upward Transient Deflection 0.000 in Ratio = Max Downward Total Deflection 0.254 in Ratio =>=240 Max Upward Total Deflection -0.018 in . Load Combination Support 1 Support 2 Support 3 Vertical Reactions Support notation : Far left is #1 Values in KIPS Overall MAXimum 0.892 2.486 Overall MINimum 0.535 1.492 D Only 0.892 2.486 +0.60D 0.535 1.492 IRG Bldg B 2200672.20 22 Steel Beam Licensee : AHBL, INCLic. # : KW-06001735 Description :Wind Girt 24' span - Wind Load AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:03AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . CODE REFERENCES Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set : ASCE 7-10 Material Properties Analysis Method : ksi Bending Axis :Major Axis Bending Beam is Fully Braced against lateral-torsional buckling Allowable Strength Design Fy : Steel Yield :46.0 ksi Beam Bracing :E: Modulus :29,000.0 .Service loads entered. Load Factors will be applied for calculations.Applied Loads Beam self weight NOT internally calculated and added Load for Span Number 1 Uniform Load : W = 0.0240 ksf, Tributary Width = 8.50 ft Load for Span Number 2 Uniform Load : W = 0.0240 ksf, Tributary Width = 8.50 ft .Design OKDESIGN SUMMARY Maximum Bending Stress Ratio =0.140 : 1 Load Combination +0.60W Span # where maximum occurs Span # 1 Location of maximum on span 11.232 ft 1.561 k Mn / Omega : Allowable 55.319 k-ft Vn/Omega : Allowable HSS8x6x3/8Section used for this span Span # where maximum occurs Location of maximum on span Span # 1 Load Combination +0.60W 80.208 k Section used for this span HSS8x6x3/8 Ma : Applied Maximum Shear Stress Ratio =0.019 : 1 24.000 ft 7.746 k-ft Va : Applied 385 >=360 844 Ratio =643 >=240 Maximum Deflection Max Downward Transient Deflection 0.568 in 506Ratio =>=360 Max Upward Transient Deflection -0.373 in Ratio = Max Downward Total Deflection 0.341 in Ratio =>=240 Max Upward Total Deflection -0.224 in . Load Combination Support 1 Support 2 Support 3 Vertical Reactions Support notation : Far left is #1 Values in KIPS Overall MAXimum 2.295 3.825 Overall MINimum 1.033 1.721 +0.60W 1.377 2.295 +0.450W 1.033 1.721 W Only 2.295 3.825 IRG Bldg B 2200672.20 23 Steel Column Licensee : AHBL, INCLic. # : KW-06001735 Description :Spandrel Support AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:03AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . .Code References Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : ASCE 7-10 General Information Steel Stress Grade Top & Bottom PinnedAnalysis Method : 23.0Overall Column Height ft Top & Bottom FixityAllowable Strength Fy : Steel Yield ksi29,000.0 ksi Steel Section Name :HSS10x10x1/2 36.0 ft E : Elastic Bending Modulus Y-Y (depth) axis : X-X (width) axis : Unbraced Length for X-X Axis buckling = 23.0 ft, K = 1.0 Unbraced Length for Y-Y Axis buckling = 23.0 ft, K = 1.0 Brace condition for deflection (buckling) along columns : .Applied Loads Service loads entered. Load Factors will be applied for calculations. Column self weight included : 1,436.58 lbs * Dead Load Factor AXIAL LOADS . . . Long Spandrel: Axial Load at 23.0 ft, Xecc = 10.0 in, D = 27.30, S = 6.70 k Long Spandrel: Axial Load at 23.0 ft, Xecc = 5.0 in, Yecc = 5.0 in, D = 19.70, S = 1.30 k BENDING LOADS . . . Lat. Point Load at 9.250 ft creating Mx-x, W = 4.40 k Lat. Point Load at 17.0 ft creating Mx-x, W = 4.40 k .DESIGN SUMMARY PASS Max. Axial+Bending Stress Ratio =0.5174 Location of max.above base 23.0 ft 55.0 k 283.285 k -8.750 k-ft Load Combination +D+S Load Combination +D+0.60W 109.042 k-ft Bending & Shear Check Results PASS Maximum Shear Stress Ratio = 3.370 k 0.03256 : 1 Location of max.above base 17.134 ft At maximum location values are . . . : 1 At maximum location values are . . . k 109.042 k-ft -37.083 k-ft Pa : Axial Pn / Omega : Allowable Ma-x : Applied Mn-x / Omega : Allowable Ma-y : Applied Mn-y / Omega : Allowable Va : Applied Vn / Omega : Allowable Maximum Load Reactions . . (see tab for all) Top along X-X 1.612 k Bottom along X-X 1.612 k Top along Y-Y 5.022 k Bottom along Y-Y 3.778 k Maximum Load Deflections . . . Along Y-Y 0.4348 in at 11.732 ft above base for load combination :W Only Along X-X -0.2955 in at 13.430 ft above base for load combination :+D+S 103.507 . Maximum Axial + Bending Stress Ratios Maximum Shear Ratios Load Combination Stress Ratio Location Stress Ratio Status LocationStatus Load Combination Results D Only PASS PASS22.85 0.013 0.00 ftft0.442 +D+S PASS PASS23.00 0.016 0.00 ftft0.517 +D+0.750S PASS PASS23.00 0.015 0.00 ftft0.499 +D+0.60W PASS PASS23.00 0.033 17.13 ftft0.442 +D+0.450W PASS PASS23.00 0.025 17.13 ftft0.442 +D+0.750S+0.450W PASS PASS23.00 0.025 17.13 ftft0.499 +0.60D+0.60W PASS PASS16.98 0.031 17.13 ftft0.310 +0.60D PASS PASS22.85 0.008 0.00 ftft0.265 . k k-ft Note: Only non-zero reactions are listed. Load Combination X-X Axis Reaction Y-Y Axis ReactionAxial Reaction @ Base @ Top@ Base @ Base @ Top Maximum Reactions @ Base @ Base@ Top @ Top Mx - End Moments My - End Moments D Only 0.35748.437 -0.3571.346 1.346 -8.208 -30.958 +D+S 0.38056.437 -0.3801.612 1.612 -8.750 -37.083 IRG Bldg B 2200672.20 24 Steel Column Licensee : AHBL, INCLic. # : KW-06001735 Description :Spandrel Support AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:03AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . k k-ft Note: Only non-zero reactions are listed. Load Combination X-X Axis Reaction Y-Y Axis ReactionAxial Reaction @ Base @ Top@ Base @ Base @ Top Maximum Reactions @ Base @ Base@ Top @ Top Mx - End Moments My - End Moments +D+0.750S 0.37554.437 -0.3751.546 1.546 -8.615 -35.552 +D+0.60W 3.37048.437 1.9101.346 1.346 -8.208 -30.958 +D+0.450W 2.61748.437 1.3431.346 1.346 -8.208 -30.958 +D+0.750S+0.450W 2.63454.437 1.3261.546 1.546 -8.615 -35.552 +0.60D+0.60W 3.22729.062 2.0530.808 0.808 -4.925 -18.575 +0.60D 0.21429.062 -0.2140.808 0.808 -4.925 -18.575 S Only 0.0248.000 -0.0240.266 0.266 -0.542 -6.125 W Only 5.0223.778 k k-ft Item X-X Axis Reaction Y-Y Axis ReactionAxial Reaction @ Base @ Top@ Base @ Base @ Top Extreme Reactions Extreme Value @ Base @ Base@ Top @ Top Mx - End Moments My - End Moments MaximumAxial @ Base 0.38056.437 -0.3801.612 1.612 -8.750 -37.083 Minimum"5.0223.778 MaximumReaction, X-X Axis Base 0.38056.437 -0.3801.612 1.612 -8.750 -37.083 Minimum"5.0223.778 MaximumReaction, Y-Y Axis Base 5.0223.778 Minimum"0.38056.437 -0.3801.612 1.612 -8.750 -37.083 MaximumReaction, X-X Axis Top 0.38056.437 -0.3801.612 1.612 -8.750 -37.083 Minimum"5.0223.778 MaximumReaction, Y-Y Axis Top 3.37048.437 1.9101.346 1.346 -8.208 -30.958 Minimum"5.0223.778 MaximumMoment, X-X Axis Base 0.35748.437 -0.3571.346 -8.208 -30.958 Minimum"0.35748.437 -0.3571.346 -8.208 -30.958 MaximumMoment, Y-Y Axis Base 0.35748.437 -0.3571.346 1.346 -30.958 -8.208 Minimum"0.35748.437 -0.3571.346 1.346 -30.958 -8.208 MaximumMoment, X-X Axis Top 5.0223.778 Minimum"0.38056.437 -0.3801.612 1.612 -8.750 -37.083 MaximumMoment, Y-Y Axis Top 5.0223.778 Minimum"0.38056.437 -0.3801.612 1.612 -8.750 -37.083 .Maximum Deflections for Load Combinations Max. X-X Deflection Max. Y-Y Deflection DistanceLoad Combination Distance D Only -0.2467 -0.065 13.430 ftftinin13.430 +D+S -0.2955 -0.070 13.430 ftftinin13.430 +D+0.750S -0.2833 -0.069 13.430 ftftinin13.430 +D+0.60W -0.2467 0.197 11.268 ftftinin13.430 +D+0.450W -0.2467 0.132 11.114 ftftinin13.430 +D+0.750S+0.450W -0.2833 0.129 10.960 ftftinin13.430 +0.60D+0.60W -0.1480 0.223 11.423 ftftinin13.430 +0.60D -0.1480 -0.039 13.430 ftftinin13.430 S Only -0.0488 -0.004 13.430 ftftinin13.430 W Only 0.0000 0.435 11.732 ftftinin0.000 .Steel Section Properties :HSS10x10x1/2 IRG Bldg B 2200672.20 25 Steel Column Licensee : AHBL, INCLic. # : KW-06001735 Description :Spandrel Support AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:03AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . Steel Section Properties :HSS10x10x1/2 R xx = 3.860 in Depth =10.000 in R yy = 3.860 in J =412.000 in^4 Width =10.000 in Wall Thick = 0.500 in Zx =60.700 in^3 Area = 17.200 in^2 Weight =62.460 plf I xx =256.00 in^4 S xx =51.20 in^3Design Thick =0.465 in I yy =256.000 in^4 C =84.200 in^3 S yy =51.200 in^3 Ycg =0.000 in Sketches IRG Bldg B 2200672.20 26 Steel Beam Licensee : AHBL, INCLic. # : KW-06001735 Description :Entrance Canopy 1 AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:03AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . CODE REFERENCES Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set : ASCE 7-10 Material Properties Analysis Method : ksi Bending Axis :Major Axis Bending Beam bracing is defined as a set spacing over all spans Allowable Strength Design Fy : Steel Yield :46 ksi Beam Bracing :E: Modulus :29,000.0 Unbraced Lengths First Brace starts at ft from Left-Most support Regular spacing of lateral supports on length of beam = 5.0 ft .Service loads entered. Load Factors will be applied for calculations.Applied Loads Beam self weight calculated and added to loading Load(s) for Span Number 1 Point Load : D = 0.390 k @ 2.0 ft Load(s) for Span Number 3 Point Load : D = 0.660, S = 0.940 k @ 0.50 ft Point Load : D = 0.930, S = 0.940 k @ 5.0 ft Point Load : D = 0.930, S = 0.940 k @ 10.0 ft Point Load : D = 0.930, S = 0.940 k @ 15.0 ft Point Load : D = 0.930, S = 0.940 k @ 19.0 ft .Design OKDESIGN SUMMARY Maximum Bending Stress Ratio =0.090 : 1 Load Combination +D+S Span # where maximum occurs Span # 3 Location of maximum on span 20.000 ft 16.694 k Mn / Omega : Allowable 167.794 k-ft Vn/Omega : Allowable HSS18x6x5/16Section used for this span Span # where maximum occurs Location of maximum on span Span # 3 Load Combination +D+S 164.739 k Section used for this span HSS18x6x5/16 Ma : Applied Maximum Shear Stress Ratio =0.101 : 1 20.000 ft 15.159 k-ft Va : Applied 0 <360 9425 Ratio =46352 >=240 Maximum Deflection Max Downward Transient Deflection 0.011 in 21,247Ratio =>=360 Max Upward Transient Deflection 0.000 in Ratio = Max Downward Total Deflection 0.025 in Ratio =>=240 Max Upward Total Deflection -0.001 in . Load Combination Support 1 Support 2 Support 3 Support 4 Support 5 Support 6 Support 7 Vertical Reactions Support notation : Far left is #1 Values in KIPS Overall MAXimum -16.9719.266-3.723 21.940 0.656 Overall MINimum -5.6092.816-0.880 7.262 0.169 D Only -9.3494.693-1.466 12.103 0.486 +D+S -16.9719.266-3.723 21.940 0.656 +D+0.750S -15.0668.123-3.159 19.480 0.614 IRG Bldg B 2200672.20 27 Steel Beam Licensee : AHBL, INCLic. # : KW-06001735 Description :Entrance Canopy 1 AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:03AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . Load Combination Support 1 Support 2 Support 3 Support 4 Support 5 Support 6 Support 7 Vertical Reactions Support notation : Far left is #1 Values in KIPS +0.60D -5.6092.816-0.880 7.262 0.292 S Only -7.6234.573-2.256 9.837 0.169 IRG Bldg B 2200672.20 28 Steel Beam Licensee : AHBL, INCLic. # : KW-06001735 Description :Entrance Beam 2 AHBL Inc. 2215 N. 30th Street Suite 200 Tacoma, WA 98403 Project Title:IRT-Greenline Engineer:Larry Higgins PE Project ID:2180307.20 Printed: 9 AUG 2018, 9:03AM Project Descr: File = Q:\2018\2180307\20_STR\NON_CAD\CALCs\2180307_IRG-Greenline.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.7.31 . CODE REFERENCES Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set : ASCE 7-10 Material Properties Analysis Method : ksi Bending Axis :Major Axis Bending Beam is Fully Braced against lateral-torsional buckling Allowable Strength Design Fy : Steel Yield :46 ksi Beam Bracing :E: Modulus :29,000.0 .Service loads entered. Load Factors will be applied for calculations.Applied Loads Beam self weight calculated and added to loading Load(s) for Span Number 1 Point Load : D = 0.3920, S = 0.20 k @ 2.50 ft Load(s) for Span Number 2 Point Load : D = 0.3920, S = 0.20 k @ 2.50 ft Point Load : D = 0.3920, S = 0.20 k @ 7.50 ft Point Load : D = 0.3920, S = 0.20 k @ 22.50 ft .Design OKDESIGN SUMMARY Maximum Bending Stress Ratio =0.034 : 1 Load Combination +D+S Span # where maximum occurs Span # 2 Location of maximum on span 23.500 ft 1.404 k Mn / Omega : Allowable 131.492 k-ft Vn/Omega : Allowable HSS18x6x1/4Section used for this span Span # where maximum occurs Location of maximum on span Span # 2 Load Combination +D+S 110.824 k Section used for this span HSS18x6x1/4 Ma : Applied Maximum Shear Stress Ratio =0.013 : 1 23.500 ft 4.453 k-ft Va : Applied 39,210 >=360 12452 Ratio =7658 >=180 Maximum Deflection Max Downward Transient Deflection 0.004 in 65,363Ratio =>=360 Max Upward Transient Deflection -0.003 in Ratio = Max Downward Total Deflection 0.023 in Ratio =>=180 Max Upward Total Deflection -0.014 in . Load Combination Support 1 Support 2 Support 3 Support 4 Support 5 Vertical Reactions Support notation : Far left is #1 Values in KIPS Overall MAXimum 2.5592.068 -0.889 Overall MINimum 0.4870.507 -0.194 D Only 2.0721.560 -0.695 +D+S 2.5592.068 -0.889 +D+0.750S 2.4371.941 -0.840 +0.60D 1.2430.936 -0.417 S Only 0.4870.507 -0.194 IRG Bldg B 2200672.20 29 Job Name = Job Number = Wall Type = Wall Description = Wall Ht =35 ft Wall Weight at Mid Height b =0.01 ft Wt of Concrete=150 pcf c =0.01 ft Wall Thickness=7.25 in. e =4.00 ft Concentric Load=2 plf d =34.99 ft Seismic Fp=.4Sd*=0.3412 Wp a =0.005 ft a = b/2 Roof Weight Joist Span=50 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =20 psf Live Floor=0 psf eccentricity 6.25 inch equiv DL =300.375 plf equiv SL =625.78125 plf c equiv Lr =500.625 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =30.9 psf P wind equiv =21.9 psf P seismic equiv =31.0 psf Equivalent Wind and Seismic Load IRG Greenline Bldg B 2200672.2 1 7 1/4 Wall Blank IRG Bldg B 2200672.20 30 Alternate Concrete Slender Wall Design (ACI 318-14 Sect 14.8) Job Name = Job Number = 2200672.20 Wall Type =1 Wall Description = 35 38 7.25 0.75 6.5 4.00 D = Dead Load 5000 S = Snow Load (1) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 5'' o.c. H = Soil Load L / 1088 E = Seismic Load (Ultimate)83% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)2 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)6.25 Dead - D (plf)300.375 D =156 D =78 Snow - S (plf)625.78125 S =326 S =163 Roof Live - Lr (plf)500.625 Lr =261 Lr =130 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)0 -4369 E =-2185 Wind - W (lb-ft/ft)0 -3095 W =-1547 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)31.0 E =4741 Wind - W (psf)21.9 W =3358 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)2161 Dead - D (lb-ft/ft)78 Snow - S (plf)626 Snow - S (lb-ft/ft)163 Roof Live - Lr (plf)501 Roof Live - Lr (lb-ft/ft)130 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)2556 Wind - W (lb-ft/ft)1810 Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) 7 1/4 Wall Blank DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Bldg B Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK 9.60 Reinforcement Max Deflection % of Flexural Capacity The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 14.8.2.5 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB IRG Bldg B 2200672.20 31 Wall Parameters Wall Height Between Supports (ft)35 (Not including parapet) Parapet Height (ft)3 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)38 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)7.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)6.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?1 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)5 OK As per foot (in2/ft)0.74 (This is the area of tension steel only) Total As in Pier (in2)0.74 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)2.40 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.125 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)3.3 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0085 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.14 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.13 OK r 0.0189 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)78 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)420 = Wall Ht * 12 b1 0.8 Ig (in4/ft)275 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)3.25 = Struc Thk / 2 Mcr (lb-in)44813 = fr * Ig / yt l c / 150 (in)2.8 OK Job Name =IRG Greenline Bldg B Job Number =2200672.2 Wall Type =1 Wall Description =7 1/4 Wall Blank Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. IRG Bldg B 2200672.20 32 *ASCE 7-11 IBC-2012 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft)3025 2906 3594 3594 2906 3399 1944 1576 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)1314 2104 4255 15118 23829 33329 22569 31358 Pu / Ag (psi)39 37 46 46 37 44 25 20 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 0.79 0.78 0.80 0.80 0.78 0.79 0.77 0.76 a (in) =(Ase*fy) / (0.85*fc*lw)0.93 0.92 0.94 0.94 0.92 0.93 0.90 0.90 CU = C ULTIMATE = a /b1 1.16 1.15 1.17 1.17 1.15 1.17 1.13 1.12 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 30.99 30.95 31.19 31.19 30.95 31.12 30.63 30.50 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =3231 4900 14209 50480 55493 99189 36754 45716 Mn (lb-in) = Ase * fy * (d - a/2) 131566 131289 132886 132886 131289 132436 129044 128178 Cu / d 0.36 0.36 0.36 0.36 0.36 0.36 0.35 0.35 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)118410 118160 119598 119598 118160 119192 116140 115360 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 3%4%12%42%47%83%32%40%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Bldg B Job Number =2E+06 Wall Type =1 Wall Description =7 1/4 Wall Blank D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft)2786 2161 2161 2473 2786 2786 Applied Moment at Mid Ht = Msa (lb-in/ft)2894 13973 22410 14951 9412 24366 Ase (in2) = (Ps + As*fy) / fy 0.78 0.77 0.77 0.78 0.78 0.78 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.403 0.403 0.403 0.403 0.403 0.403 CE = C ELASTIC = k * d 1.31 1.31 1.31 1.31 1.31 1.31 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 30.19 29.91 29.91 30.05 30.19 30.19 M1 = Msa (lb-in)2894 13973 22410 14951 9412 24366 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 275 275 275 275 275 275 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))3035 14493 23244 15591 9868 25547 Ie2 (in4)275 275 275 275 275 275 M3 (lb-in)3035 14493 23244 15591 9868 25547 Ie3 (in4)275 275 275 275 275 275 M4 (lb-in)3035 14493 23244 15591 9868 25547 Ie4 (in4)275 275 275 275 275 275 M5 (lb-in)3035 14493 23244 15591 9868 25547 Ie5 (in4)275 275 275 275 275 275 M6 (lb-in)3035 14493 23244 15591 9868 25547 Ie6 (in4)275 275 275 275 275 275 M7 (lb-in)3035 14493 23244 15591 9868 25547 Ie7 (in4)275 275 275 275 275 275 l c / 150 (in)2.8 2.8 2.8 2.8 2.8 2.8 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.05 0.24 0.39 0.26 0.16 E+S is N/A OK OK OK OK OK OK OKA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7EA=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WU=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5* IRG Bldg B 2200672.20 33 Job Name = Job Number = Wall Type = Wall Description = Wall Ht =29.75 ft Wall Weight at Mid Height b =3.4 ft Wt of Concrete=150 pcf c =7 ft Wall Thickness=7.25 in. e =1.75 ft Concentric Load=1310 plf d =22.75 ft Seismic Fp=.4Sd*=0.3412 Wp a =1.7 ft a = b/2 Roof Weight Joist Span=60 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =20 psf Live Floor=0 psf eccentricity 2.5 inch equiv DL =709.71429 plf equiv SL =1478.5714 plf c equiv Lr =1182.8571 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =30.9 psf P wind equiv =43.2 psf P seismic equiv =57.7 psf Equivalent Wind and Seismic Load IRG Greenline Bldg B 2200672.2 6a man door dock IRG Bldg B 2200672.20 34 Alternate Concrete Slender Wall Design (ACI 318-14 Sect 14.8) Job Name = Job Number = 2200672.20 Wall Type =6a Wall Description = 29.75 29.75 7.25 0.75 6.5 1.75 D = Dead Load 5000 S = Snow Load (2) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 7'' o.c. H = Soil Load L / 948 E = Seismic Load (Ultimate)52% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)1310 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)2.5 Dead - D (plf) 709.7142857 D =148 D =74 Snow - S (plf) 1478.571429 S =308 S =154 Roof Live - Lr (plf) 1182.857143 Lr =246 Lr =123 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)0 -5807 E =-2904 Wind - W (lb-ft/ft)0 -4343 W =-2172 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)57.7 E =6386 Wind - W (psf)43.2 W =4776 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)3367 Dead - D (lb-ft/ft)74 Snow - S (plf)1479 Snow - S (lb-ft/ft)154 Roof Live - Lr (plf)1183 Roof Live - Lr (lb-ft/ft)123 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)3483 Wind - W (lb-ft/ft)2605 Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) man door dock DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Bldg B Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK 3.00 Reinforcement Max Deflection % of Flexural Capacity The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 14.8.2.5 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB IRG Bldg B 2200672.20 35 Wall Parameters Wall Height Between Supports (ft)29.75 (Not including parapet) Parapet Height (ft)0 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)29.75 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)7.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)6.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?2 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)7 OK As per foot (in2/ft)0.53 (This is the area of tension steel only) Total As in Pier (in2)0.53 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)1.71 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.125 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)4.7 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0121 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.20 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.19 OK r 0.0094 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)78 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)357 = Wall Ht * 12 b1 0.8 Ig (in4/ft)275 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)3.25 = Struc Thk / 2 Mcr (lb-in)44813 = fr * Ig / yt l c / 150 (in)2.38 OK Job Name =IRG Greenline Bldg B Job Number =2200672.2 Wall Type =6a Wall Description =man door dock Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. IRG Bldg B 2200672.20 36 *ASCE 7-11 IBC-2012 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft)4714 4780 6406 6406 4780 5650 3031 2456 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)1242 1989 4022 19650 33246 44302 32056 42439 Pu / Ag (psi)60 61 82 82 61 72 39 31 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 0.58 0.58 0.60 0.60 0.58 0.59 0.56 0.55 a (in) =(Ase*fy) / (0.85*fc*lw)0.68 0.68 0.71 0.71 0.68 0.70 0.66 0.65 CU = C ULTIMATE = a /b1 0.85 0.85 0.88 0.88 0.85 0.87 0.82 0.82 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 63.87 63.93 65.25 65.25 63.93 64.64 62.46 61.97 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =1838 2961 7070 34546 49502 71905 40736 51383 Mn (lb-in) = Ase * fy * (d - a/2) 151351 151534 156036 156036 151534 153946 146663 145057 Cu / d 0.18 0.18 0.19 0.19 0.18 0.19 0.18 0.17 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)136216 136381 140433 140433 136381 138551 131997 130552 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 1%2%5%25%36%52%31%39%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Bldg B Job Number =2E+06 Wall Type =6a Wall Description =man door dock D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft)4846 3367 3367 4107 4846 4846 Applied Moment at Mid Ht = Msa (lb-in/ft)2735 19642 30142 20566 12113 31990 Ase (in2) = (Ps + As*fy) / fy 0.61 0.58 0.58 0.59 0.61 0.61 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.306 0.306 0.306 0.306 0.306 0.306 CE = C ELASTIC = k * d 1.43 1.43 1.43 1.43 1.43 1.43 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 58.01 56.13 56.13 57.07 58.01 58.01 M1 = Msa (lb-in)2735 19642 30142 20566 12113 31990 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 275 275 275 275 275 275 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))2904 20468 31410 21631 12860 33964 Ie2 (in4)275 275 275 275 275 275 M3 (lb-in)2904 20468 31410 21631 12860 33964 Ie3 (in4)275 275 275 275 275 275 M4 (lb-in)2904 20468 31410 21631 12860 33964 Ie4 (in4)275 275 275 275 275 275 M5 (lb-in)2904 20468 31410 21631 12860 33964 Ie5 (in4)275 275 275 275 275 275 M6 (lb-in)2904 20468 31410 21631 12860 33964 Ie6 (in4)275 275 275 275 275 275 M7 (lb-in)2904 20468 31410 21631 12860 33964 Ie7 (in4)275 275 275 275 275 275 l c / 150 (in)2.38 2.38 2.38 2.38 2.38 2.38 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.03 0.25 0.38 0.26 0.15 E+S is N/A OK OK OK OK OK OK OKA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7EA=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WU=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5* IRG Bldg B 2200672.20 37 Job Name = Job Number = Wall Type = Wall Description = Wall Ht =29.75 ft Wall Weight at Mid Height b =15.4 ft Wt of Concrete=150 pcf c =7 ft Wall Thickness=7.25 in. e =3.17 ft Concentric Load=3278 plf d =22.75 ft Seismic Fp=.4Sd*=0.3412 Wp a =7.7 ft a = b/2 Roof Weight Joist Span=60 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =20 psf Live Floor=0 psf eccentricity 2.5 inch equiv DL =1235.2763 plf equiv SL =2573.4923 plf c equiv Lr =2058.7938 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =30.9 psf P wind equiv =75.1 psf P seismic equiv =98.0 psf Equivalent Wind and Seismic Load IRG Greenline Bldg B 2200672.2 6b man truck door dock IRG Bldg B 2200672.20 38 Alternate Concrete Slender Wall Design (ACI 318-14 Sect 14.8) Job Name = Job Number = 2200672.20 Wall Type =6b Wall Description = 29.75 29.75 7.25 0.75 6.5 3.17 D = Dead Load 5000 S = Snow Load (2) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 5'' o.c. H = Soil Load L / 306 E = Seismic Load (Ultimate)95% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)3278 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)2.5 Dead - D (plf) 1235.276287 D =257 D =129 Snow - S (plf) 2573.492264 S =536 S =268 Roof Live - Lr (plf) 2058.793811 Lr =429 Lr =214 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)0 -9860 E =-4930 Wind - W (lb-ft/ft)0 -7560 W =-3780 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)98.0 E =10843 Wind - W (psf)75.1 W =8314 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)5861 Dead - D (lb-ft/ft)129 Snow - S (plf)2573 Snow - S (lb-ft/ft)268 Roof Live - Lr (plf)2059 Roof Live - Lr (lb-ft/ft)214 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)5913 Wind - W (lb-ft/ft)4534 Reinforcement Max Deflection % of Flexural Capacity 7.00 Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) man truck door dock DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Bldg B Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 14.8.2.5 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB IRG Bldg B 2200672.20 39 Wall Parameters Wall Height Between Supports (ft)29.75 (Not including parapet) Parapet Height (ft)0 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)29.75 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)7.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)6.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?2 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)5.428 OK As per foot (in2/ft)0.68 (This is the area of tension steel only) Total As in Pier (in2)0.68 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)2.21 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.125 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)4.7 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0156 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.20 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.19 OK r 0.0121 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)78 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)357 = Wall Ht * 12 b1 0.8 Ig (in4/ft)275 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)3.25 = Struc Thk / 2 Mcr (lb-in)44813 = fr * Ig / yt l c / 150 (in)2.38 OK Job Name =IRG Greenline Bldg B Job Number =2200672.2 Wall Type =6b Wall Description =man truck door dock Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. IRG Bldg B 2200672.20 40 *ASCE 7-11 IBC-2012 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft)8205 8320 11151 11151 8320 9834 5275 4275 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)2162 3461 7000 34202 57866 75324 55794 72082 Pu / Ag (psi)105 107 143 143 107 126 68 55 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 0.77 0.77 0.81 0.81 0.77 0.79 0.74 0.73 a (in) =(Ase*fy) / (0.85*fc*lw)0.91 0.91 0.95 0.95 0.91 0.93 0.87 0.86 CU = C ULTIMATE = a /b1 1.14 1.14 1.19 1.19 1.14 1.16 1.09 1.07 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 76.00 76.08 77.85 77.85 76.08 77.03 74.09 73.41 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =4111 6660 18870 92200 111345 171452 81178 96850 Mn (lb-in) = Ase * fy * (d - a/2) 196333 196633 204007 204007 196633 200588 188616 185965 Cu / d 0.24 0.24 0.25 0.25 0.24 0.25 0.23 0.23 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)176700 176970 183606 183606 176970 180529 169755 167368 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 2%4%10%50%63%95%48%58%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Bldg B Job Number =2E+06 Wall Type =6b Wall Description =man truck door dock D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft)8434 5861 5861 7148 8434 8434 Applied Moment at Mid Ht = Msa (lb-in/ft)4761 34187 51213 35795 21082 54430 Ase (in2) = (Ps + As*fy) / fy 0.82 0.78 0.78 0.80 0.82 0.82 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.339 0.339 0.339 0.339 0.339 0.339 CE = C ELASTIC = k * d 1.59 1.59 1.59 1.59 1.59 1.59 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 72.62 69.65 69.65 71.14 72.62 72.62 M1 = Msa (lb-in)4761 34187 51213 35795 21082 54430 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 275 275 207 275 275 185 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))5297 36772 56481 39152 23455 64026 Ie2 (in4)275 275 172 275 275 142 M3 (lb-in)5297 36772 57686 39152 23455 67683 Ie3 (in4)275 275 166 275 275 131 M4 (lb-in)5297 36772 57964 39152 23455 69044 Ie4 (in4)275 275 164 275 275 128 M5 (lb-in)5297 36772 58028 39152 23455 69541 Ie5 (in4)275 275 164 275 275 127 M6 (lb-in)5297 36772 58043 39152 23455 69720 Ie6 (in4)275 275 164 275 275 126 M7 (lb-in)5297 36772 58046 39152 23455 69785 Ie7 (in4)275 275 164 275 275 126 l c / 150 (in)2.38 2.38 2.38 2.38 2.38 2.38 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.06 0.44 1.17 0.47 0.28 E+S is N/A OK OK OK OK OK OK OK Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5*U=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 A=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7EIRG Bldg B 2200672.20 41 Job Name = Job Number = Wall Type = Wall Description = Wall Ht =29.75 ft Wall Weight at Mid Height b =12 ft Wt of Concrete=150 pcf c =14 ft Wall Thickness=7.25 in. e =1.75 ft Concentric Load=4622 plf d =15.75 ft Seismic Fp=.4Sd*=0.3412 Wp a =6 ft a = b/2 Roof Weight Joist Span=60 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =20 psf Live Floor=0 psf eccentricity 2.5 inch equiv DL =1594.2857 plf equiv SL =3321.4286 plf c equiv Lr =2657.1429 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =30.9 psf P wind equiv =97.0 psf P seismic equiv =95.2 psf Equivalent Wind and Seismic Load IRG Greenline Bldg B 2200672.2 6c truck door dock IRG Bldg B 2200672.20 42 Alternate Concrete Slender Wall Design (ACI 318-14 Sect 14.8) Job Name = Job Number = 2200672.20 Wall Type =6c Wall Description = 29.75 29.75 7.25 0.75 6.5 1.75 D = Dead Load 5000 S = Snow Load (2) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 4'' o.c. H = Soil Load L / 307 E = Seismic Load (Ultimate)90% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)4622 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)2.5 Dead - D (plf) 1594.285714 D =332 D =166 Snow - S (plf) 3321.428571 S =692 S =346 Roof Live - Lr (plf) 2657.142857 Lr =554 Lr =277 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)0 -9575 E =-4788 Wind - W (lb-ft/ft)0 -9757 W =-4878 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)95.2 E =10530 Wind - W (psf)97.0 W =10730 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)7564 Dead - D (lb-ft/ft)166 Snow - S (plf)3321 Snow - S (lb-ft/ft)346 Roof Live - Lr (plf)2657 Roof Live - Lr (lb-ft/ft)277 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)5742 Wind - W (lb-ft/ft)5851 Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) truck door dock DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Bldg B Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK 5.00 Reinforcement Max Deflection % of Flexural Capacity The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 14.8.2.5 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB IRG Bldg B 2200672.20 43 Wall Parameters Wall Height Between Supports (ft)29.75 (Not including parapet) Parapet Height (ft)0 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)29.75 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)7.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)6.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?2 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)4.2 OK As per foot (in2/ft)0.88 (This is the area of tension steel only) Total As in Pier (in2)0.88 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)2.86 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.125 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)4.7 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0202 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.20 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.19 OK r 0.0156 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)78 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)357 = Wall Ht * 12 b1 0.8 Ig (in4/ft)275 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)3.25 = Struc Thk / 2 Mcr (lb-in)44813 = fr * Ig / yt l c / 150 (in)2.38 OK Job Name =IRG Greenline Bldg B Job Number =2200672.2 Wall Type =6c Wall Description =truck door dock Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. IRG Bldg B 2200672.20 44 *ASCE 7-11 IBC-2012 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft) 10590 10738 14391 14391 10738 12693 6808 5517 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)2790 4467 9034 44142 74683 74547 72010 70363 Pu / Ag (psi)136 138 185 185 138 163 87 71 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 1.00 1.00 1.04 1.04 1.00 1.02 0.96 0.94 a (in) =(Ase*fy) / (0.85*fc*lw)1.18 1.18 1.23 1.23 1.18 1.20 1.12 1.11 CU = C ULTIMATE = a /b1 1.47 1.47 1.53 1.53 1.47 1.50 1.40 1.38 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 87.13 87.21 89.07 89.07 87.21 88.21 85.15 84.46 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =5984 9727 31114 152024 162621 202548 110974 98669 Mn (lb-in) = Ase * fy * (d - a/2) 245731 246091 254921 254921 246091 250831 236454 233258 Cu / d 0.31 0.31 0.33 0.33 0.31 0.32 0.30 0.30 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)221158 221482 229428 229428 221482 225748 212808 209932 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 3%4%14%66%73%90%52%47%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Bldg B Job Number =2E+06 Wall Type =6c Wall Description =truck door dock D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft) 10886 7564 7564 9225 10886 10886 Applied Moment at Mid Ht = Msa (lb-in/ft)6145 44123 50230 46198 27209 54381 Ase (in2) = (Ps + As*fy) / fy 1.06 1.00 1.00 1.03 1.06 1.06 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.375 0.375 0.375 0.375 0.375 0.375 CE = C ELASTIC = k * d 1.76 1.76 1.76 1.76 1.76 1.76 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 87.08 83.66 83.66 85.37 87.08 87.08 M1 = Msa (lb-in)6145 44123 50230 46198 27209 54381 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 275 275 219 258 275 192 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))7067 48525 56669 52363 31296 66867 Ie2 (in4)275 234 178 204 275 144 M3 (lb-in)7067 49379 58400 54284 31296 72490 Ie3 (in4)275 226 170 192 275 131 M4 (lb-in)7067 49579 58859 54893 31296 74792 Ie4 (in4)275 225 168 188 275 127 M5 (lb-in)7067 49626 58980 55086 31296 75676 Ie5 (in4)275 224 167 187 275 126 M6 (lb-in)7067 49637 59012 55147 31296 76006 Ie6 (in4)275 224 167 187 275 126 M7 (lb-in)7067 49639 59020 55166 31296 76128 Ie7 (in4)275 224 167 187 275 125 l c / 150 (in)2.38 2.38 2.38 2.38 2.38 2.38 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.08 0.73 1.16 0.97 0.38 E+S is N/A OK OK OK OK OK OK OKA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7EA=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WU=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5* IRG Bldg B 2200672.20 45 Job Name = Job Number = Wall Type = Wall Description = Wall Ht =29.75 ft Wall Weight at Mid Height b =9 ft Wt of Concrete=150 pcf c =10 ft Wall Thickness=7.25 in. e =1.75 ft Concentric Load=3466 plf d =19.75 ft Seismic Fp=.4Sd*=0.3412 Wp a =4.5 ft a = b/2 Roof Weight Joist Span=60 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =20 psf Live Floor=0 psf eccentricity 2.5 inch equiv DL =1285.7143 plf equiv SL =2678.5714 plf c equiv Lr =2142.8571 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =30.9 psf P wind equiv =78.2 psf P seismic equiv =93.5 psf Equivalent Wind and Seismic Load IRG Greenline Bldg B 2200672.2 8 dock door IRG Bldg B 2200672.20 46 Alternate Concrete Slender Wall Design (ACI 318-14 Sect 14.8) Job Name = Job Number = 2200672.20 Wall Type =8 Wall Description = 29.75 29.75 7.25 0.75 6.5 1.75 D = Dead Load 5000 S = Snow Load (2) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 5'' o.c. H = Soil Load L / 355 E = Seismic Load (Ultimate)91% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)3466 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)2.5 Dead - D (plf) 1285.714286 D =268 D =134 Snow - S (plf) 2678.571429 S =558 S =279 Roof Live - Lr (plf) 2142.857143 Lr =446 Lr =223 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)0 -9404 E =-4702 Wind - W (lb-ft/ft)0 -7868 W =-3934 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)93.5 E =10342 Wind - W (psf)78.2 W =8653 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)6100 Dead - D (lb-ft/ft)134 Snow - S (plf)2679 Snow - S (lb-ft/ft)279 Roof Live - Lr (plf)2143 Roof Live - Lr (lb-ft/ft)223 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)5640 Wind - W (lb-ft/ft)4719 Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) dock door DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Bldg B Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK 4.00 Reinforcement Max Deflection % of Flexural Capacity The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 14.8.2.5 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB IRG Bldg B 2200672.20 47 Wall Parameters Wall Height Between Supports (ft)29.75 (Not including parapet) Parapet Height (ft)0 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)29.75 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)7.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)6.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?2 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)5.25 OK As per foot (in2/ft)0.70 (This is the area of tension steel only) Total As in Pier (in2)0.70 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)2.29 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.125 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)4.7 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0161 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.20 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.19 OK r 0.0125 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)78 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)357 = Wall Ht * 12 b1 0.8 Ig (in4/ft)275 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)3.25 = Struc Thk / 2 Mcr (lb-in)44813 = fr * Ig / yt l c / 150 (in)2.38 OK Job Name =IRG Greenline Bldg B Job Number =2200672.2 Wall Type =8 Wall Description =dock door Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. IRG Bldg B 2200672.20 48 *ASCE 7-11 IBC-2012 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft)8540 8659 11606 11606 8659 10236 5490 4449 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)2250 3603 7286 35599 60229 72225 58072 68851 Pu / Ag (psi)109 111 149 149 111 131 70 57 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 0.80 0.80 0.84 0.84 0.80 0.82 0.76 0.75 a (in) =(Ase*fy) / (0.85*fc*lw)0.94 0.94 0.98 0.98 0.94 0.96 0.90 0.89 CU = C ULTIMATE = a /b1 1.18 1.18 1.23 1.23 1.18 1.21 1.12 1.11 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 77.47 77.54 79.33 79.33 77.54 78.51 75.53 74.86 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =4362 7070 20380 99580 118202 168991 85302 93174 Mn (lb-in) = Ase * fy * (d - a/2) 202398 202707 210316 210316 202707 206789 194431 191693 Cu / d 0.25 0.25 0.26 0.26 0.25 0.26 0.24 0.24 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)182158 182437 189285 189285 182437 186110 174988 172524 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 2%4%11%53%65%91%49%54%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Bldg B Job Number =2E+06 Wall Type =8 Wall Description =dock door D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft)8779 6100 6100 7439 8779 8779 Applied Moment at Mid Ht = Msa (lb-in/ft)4955 35583 48982 37257 21943 52330 Ase (in2) = (Ps + As*fy) / fy 0.85 0.80 0.80 0.83 0.85 0.85 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.343 0.343 0.343 0.343 0.343 0.343 CE = C ELASTIC = k * d 1.61 1.61 1.61 1.61 1.61 1.61 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 74.46 71.41 71.41 72.93 74.46 74.46 M1 = Msa (lb-in)4955 35583 48982 37257 21943 52330 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 275 275 227 275 275 200 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))5539 38392 53738 40907 24525 61167 Ie2 (in4)275 275 189 275 275 153 M3 (lb-in)5539 38392 54800 40907 24525 64508 Ie3 (in4)275 275 183 275 275 142 M4 (lb-in)5539 38392 55041 40907 24525 65763 Ie4 (in4)275 275 181 275 275 138 M5 (lb-in)5539 38392 55095 40907 24525 66228 Ie5 (in4)275 275 181 275 275 136 M6 (lb-in)5539 38392 55108 40907 24525 66400 Ie6 (in4)275 275 181 275 275 136 M7 (lb-in)5539 38392 55111 40907 24525 66462 Ie7 (in4)275 275 181 275 275 136 l c / 150 (in)2.38 2.38 2.38 2.38 2.38 2.38 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.07 0.46 1.00 0.49 0.29 E+S is N/A OK OK OK OK OK OK OKA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7EA=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WU=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5* IRG Bldg B 2200672.20 49 Job Name = Job Number = Wall Type = Wall Description = Wall Ht =29.75 ft Wall Weight at Mid Height b =0.01 ft Wt of Concrete=150 pcf c =0.01 ft Wall Thickness=7.25 in. e =3.00 ft Concentric Load=2 plf d =29.74 ft Seismic Fp=.4Sd*=0.3412 Wp a =0.005 ft a = b/2 Roof Weight Joist Span=60 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =20 psf Live Floor=0 psf eccentricity 2.5 inch equiv DL =360.6 plf equiv SL =751.25 plf c equiv Lr =601 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =30.9 psf P wind equiv =21.9 psf P seismic equiv =31.0 psf Equivalent Wind and Seismic Load IRG Greenline Bldg B 2200672.2 10 BLANK DOCK IRG Bldg B 2200672.20 50 Alternate Concrete Slender Wall Design (ACI 318-14 Sect 14.8) Job Name = Job Number = 2200672.20 Wall Type =10 Wall Description = 29.75 29.75 7.25 0.75 6.5 3.00 D = Dead Load 5000 S = Snow Load (1) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 11'' o.c. H = Soil Load L / 1805 E = Seismic Load (Ultimate)98% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)2 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)2.5 Dead - D (plf)360.6 D =75 D =38 Snow - S (plf)751.25 S =157 S =78 Roof Live - Lr (plf)601 Lr =125 Lr =63 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)0 -3116 E =-1558 Wind - W (lb-ft/ft)0 -2207 W =-1103 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)31.0 E =3427 Wind - W (psf)21.9 W =2427 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)1711 Dead - D (lb-ft/ft)38 Snow - S (plf)751 Snow - S (lb-ft/ft)78 Roof Live - Lr (plf)601 Roof Live - Lr (lb-ft/ft)63 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)1869 Wind - W (lb-ft/ft)1323 Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) BLANK DOCK DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Bldg B Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK 3.27 Reinforcement Max Deflection % of Flexural Capacity The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 14.8.2.5 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB IRG Bldg B 2200672.20 51 Wall Parameters Wall Height Between Supports (ft)29.75 (Not including parapet) Parapet Height (ft)0 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)29.75 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)7.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)6.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?1 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)11 OK As per foot (in2/ft)0.33 (This is the area of tension steel only) Total As in Pier (in2)0.33 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)1.09 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.125 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)3.3 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0038 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.14 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.13 OK r 0.0086 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)78 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)357 = Wall Ht * 12 b1 0.8 Ig (in4/ft)275 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)3.25 = Struc Thk / 2 Mcr (lb-in)44813 = fr * Ig / yt l c / 150 (in)2.38 OK Job Name =IRG Greenline Bldg B Job Number =2200672.2 Wall Type =10 Wall Description =BLANK DOCK Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. IRG Bldg B 2200672.20 52 *ASCE 7-11 IBC-2012 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft)2395 2429 3255 3255 2429 2871 1540 1248 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)631 1010 2043 9984 16892 23699 16287 22753 Pu / Ag (psi)31 31 42 42 31 37 20 16 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 0.37 0.38 0.39 0.39 0.38 0.38 0.36 0.36 a (in) =(Ase*fy) / (0.85*fc*lw)0.44 0.44 0.46 0.46 0.44 0.45 0.42 0.42 CU = C ULTIMATE = a /b1 0.55 0.55 0.57 0.57 0.55 0.56 0.53 0.52 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 20.30 20.33 20.82 20.82 20.33 20.59 19.78 19.60 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =1309 2126 6522 31866 35547 61130 24749 31587 Mn (lb-in) = Ase * fy * (d - a/2) 68096 68190 70504 70504 68190 69430 65685 64860 Cu / d 0.17 0.17 0.18 0.18 0.17 0.17 0.16 0.16 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)61286 61371 63454 63454 61371 62487 59117 58374 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 2%3%10%50%58%98%42%54%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Bldg B Job Number =2E+06 Wall Type =10 Wall Description =BLANK DOCK D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft)2462 1711 1711 2087 2462 2462 Applied Moment at Mid Ht = Msa (lb-in/ft)1390 9980 16147 10449 6154 17086 Ase (in2) = (Ps + As*fy) / fy 0.38 0.36 0.36 0.37 0.38 0.38 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.295 0.295 0.295 0.295 0.295 0.295 CE = C ELASTIC = k * d 0.96 0.96 0.96 0.96 0.96 0.96 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 17.72 17.24 17.24 17.48 17.72 17.72 M1 = Msa (lb-in)1390 9980 16147 10449 6154 17086 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 275 275 275 275 275 275 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))1432 10189 16486 10718 6342 17606 Ie2 (in4)275 275 275 275 275 275 M3 (lb-in)1432 10189 16486 10718 6342 17606 Ie3 (in4)275 275 275 275 275 275 M4 (lb-in)1432 10189 16486 10718 6342 17606 Ie4 (in4)275 275 275 275 275 275 M5 (lb-in)1432 10189 16486 10718 6342 17606 Ie5 (in4)275 275 275 275 275 275 M6 (lb-in)1432 10189 16486 10718 6342 17606 Ie6 (in4)275 275 275 275 275 275 M7 (lb-in)1432 10189 16486 10718 6342 17606 Ie7 (in4)275 275 275 275 275 275 l c / 150 (in)2.38 2.38 2.38 2.38 2.38 2.38 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.02 0.12 0.20 0.13 0.08 E+S is N/A OK OK OK OK OK OK OKA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7EA=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WU=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5* IRG Bldg B 2200672.20 53 Job Name = Job Number = Wall Type = Wall Description = Wall Ht =35 ft Wall Weight at Mid Height b =3.4 ft Wt of Concrete=150 pcf c =7 ft Wall Thickness=7.25 in. e =2.00 ft Concentric Load=1579 plf d =28 ft Seismic Fp=.4Sd*=0.3412 Wp a =1.7 ft a = b/2 Roof Weight Joist Span=50 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =20 psf Live Floor=0 psf eccentricity 6.25 inch equiv DL =555 plf equiv SL =1156.25 plf c equiv Lr =925 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =30.9 psf P wind equiv =40.5 psf P seismic equiv =55.1 psf Equivalent Wind and Seismic Load IRG Greenline Bldg B 2200672.2 31 MAN DOOR TALL IRG Bldg B 2200672.20 54 Alternate Concrete Slender Wall Design (ACI 318-14 Sect 14.8) Job Name = Job Number = 2200672.20 Wall Type =31 Wall Description = 35 38 7.25 0.75 6.5 2.00 D = Dead Load 5000 S = Snow Load (2) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 6'' o.c. H = Soil Load L / 591 E = Seismic Load (Ultimate)81% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)1579 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)6.25 Dead - D (plf)555 D =289 D =145 Snow - S (plf)1156.25 S =602 S =301 Roof Live - Lr (plf)925 Lr =482 Lr =241 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)0 -7782 E =-3891 Wind - W (lb-ft/ft)0 -5718 W =-2859 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)55.1 E =8444 Wind - W (psf)40.5 W =6204 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)3992 Dead - D (lb-ft/ft)145 Snow - S (plf)1156 Snow - S (lb-ft/ft)301 Roof Live - Lr (plf)925 Roof Live - Lr (lb-ft/ft)241 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)4553 Wind - W (lb-ft/ft)3345 Reinforcement Max Deflection % of Flexural Capacity 4.00 Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) MAN DOOR TALL DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Bldg B Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 14.8.2.5 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB IRG Bldg B 2200672.20 55 Wall Parameters Wall Height Between Supports (ft)35 (Not including parapet) Parapet Height (ft)3 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)38 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)7.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)6.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?2 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)6 OK As per foot (in2/ft)0.61 (This is the area of tension steel only) Total As in Pier (in2)0.61 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)2.00 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.125 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)4.7 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0141 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.20 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.19 OK r 0.0109 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)78 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)420 = Wall Ht * 12 b1 0.8 Ig (in4/ft)275 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)3.25 = Struc Thk / 2 Mcr (lb-in)44813 = fr * Ig / yt l c / 150 (in)2.8 OK Job Name =IRG Greenline Bldg B Job Number =2200672.2 Wall Type =31 Wall Description =MAN DOOR TALL Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. IRG Bldg B 2200672.20 56 *ASCE 7-11 IBC-2012 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft)5589 5368 6640 6640 5368 6281 3593 2912 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)2428 3888 7863 27933 44028 59540 41701 55899 Pu / Ag (psi)72 69 85 85 69 81 46 37 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 0.68 0.68 0.69 0.69 0.68 0.69 0.66 0.65 a (in) =(Ase*fy) / (0.85*fc*lw)0.80 0.79 0.81 0.81 0.79 0.81 0.77 0.76 CU = C ULTIMATE = a /b1 1.00 0.99 1.02 1.02 0.99 1.01 0.96 0.95 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 70.41 70.26 71.17 71.17 70.26 70.91 68.95 68.44 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =4692 7260 18165 64533 82217 128982 61033 75398 Mn (lb-in) = Ase * fy * (d - a/2) 174504 173910 177335 177335 173910 176368 169103 167251 Cu / d 0.21 0.21 0.22 0.22 0.21 0.22 0.21 0.20 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)157054 156519 159601 159601 156519 158731 152192 150526 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 3%5%11%40%53%81%40%50%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Bldg B Job Number =2E+06 Wall Type =31 Wall Description =MAN DOOR TALL D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft)5148 3992 3992 4570 5148 5148 Applied Moment at Mid Ht = Msa (lb-in/ft)5348 25819 39978 27625 17390 43591 Ase (in2) = (Ps + As*fy) / fy 0.70 0.68 0.68 0.69 0.70 0.70 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.325 0.325 0.325 0.325 0.325 0.325 CE = C ELASTIC = k * d 1.53 1.53 1.53 1.53 1.53 1.53 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 64.51 63.13 63.13 63.82 64.51 64.51 M1 = Msa (lb-in)5348 25819 39978 27625 17390 43591 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 275 275 275 275 275 275 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))5847 27651 42815 29893 19015 47665 Ie2 (in4)275 275 275 275 275 239 M3 (lb-in)5847 27651 42815 29893 19015 48335 Ie3 (in4)275 275 275 275 275 232 M4 (lb-in)5847 27651 42815 29893 19015 48499 Ie4 (in4)275 275 275 275 275 230 M5 (lb-in)5847 27651 42815 29893 19015 48539 Ie5 (in4)275 275 275 275 275 230 M6 (lb-in)5847 27651 42815 29893 19015 48548 Ie6 (in4)275 275 275 275 275 230 M7 (lb-in)5847 27651 42815 29893 19015 48551 Ie7 (in4)275 275 275 275 275 230 l c / 150 (in)2.8 2.8 2.8 2.8 2.8 2.8 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.10 0.46 0.71 0.50 0.32 E+S is N/A OK OK OK OK OK OK OK Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5*U=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 A=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7EIRG Bldg B 2200672.20 57 Job Name = Job Number = Wall Type = Wall Description = Wall Ht =35 ft Wall Weight at Mid Height b =0.01 ft Wt of Concrete=150 pcf c =0.01 ft Wall Thickness=9.25 in. e =4.00 ft Concentric Load=3 plf d =34.99 ft Seismic Fp=.4Sd*=0.3412 Wp a =0.005 ft a = b/2 Roof Weight Joist Span=50 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =20 psf Live Floor=0 psf eccentricity 6.25 inch equiv DL =300.375 plf equiv SL =625.78125 plf c equiv Lr =500.625 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =39.5 psf P wind equiv =21.9 psf P seismic equiv =39.5 psf Equivalent Wind and Seismic Load IRG Greenline Bldg B 2200672.2 34 9 1/4 Wall Blank IRG Bldg B 2200672.20 58 Alternate Concrete Slender Wall Design (ACI 318-14 Sect 14.8) Job Name = Job Number = 2200672.20 Wall Type =34 Wall Description = 35 38 9.25 0.75 8.5 4.00 D = Dead Load 5000 S = Snow Load (1) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 8'' o.c. H = Soil Load L / 1957 E = Seismic Load (Ultimate)78% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)3 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)6.25 Dead - D (plf)300.375 D =156 D =78 Snow - S (plf)625.78125 S =326 S =163 Roof Live - Lr (plf)500.625 Lr =261 Lr =130 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)0 -5575 E =-2787 Wind - W (lb-ft/ft)0 -3095 W =-1547 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)39.5 E =6049 Wind - W (psf)21.9 W =3358 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)2674 Dead - D (lb-ft/ft)78 Snow - S (plf)626 Snow - S (lb-ft/ft)163 Roof Live - Lr (plf)501 Roof Live - Lr (lb-ft/ft)130 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)3261 Wind - W (lb-ft/ft)1810 Reinforcement Max Deflection % of Flexural Capacity 6.00 Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) 9 1/4 Wall Blank DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Bldg B Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 14.8.2.5 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB IRG Bldg B 2200672.20 59 Wall Parameters Wall Height Between Supports (ft)35 (Not including parapet) Parapet Height (ft)3 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)38 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)9.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)8.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?1 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)8 OK As per foot (in2/ft)0.46 (This is the area of tension steel only) Total As in Pier (in2)0.46 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)1.50 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.125 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)4.3 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0041 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.18 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.17 OK r 0.0090 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)102 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)420 = Wall Ht * 12 b1 0.8 Ig (in4/ft)614 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)4.25 = Struc Thk / 2 Mcr (lb-in)76633 = fr * Ig / yt l c / 150 (in)2.8 OK Job Name =IRG Greenline Bldg B Job Number =2200672.2 Wall Type =34 Wall Description =9 1/4 Wall Blank Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. IRG Bldg B 2200672.20 60 *ASCE 7-11 IBC-2012 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft)3743 3521 4210 4210 3521 4103 2406 1950 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)1314 2104 4255 15118 23829 41791 22569 39820 Pu / Ag (psi)37 35 41 41 35 40 24 19 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 0.52 0.52 0.53 0.53 0.52 0.53 0.50 0.49 a (in) =(Ase*fy) / (0.85*fc*lw)0.61 0.61 0.62 0.62 0.61 0.62 0.59 0.58 CU = C ULTIMATE = a /b1 0.77 0.76 0.78 0.78 0.76 0.78 0.74 0.72 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 47.39 47.17 47.85 47.85 47.17 47.74 46.05 45.58 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =2528 3852 9147 32497 43624 87490 33075 53816 Mn (lb-in) = Ase * fy * (d - a/2) 123620 122813 125313 125313 122813 124925 118742 117070 Cu / d 0.18 0.18 0.18 0.18 0.18 0.18 0.17 0.17 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)111258 110531 112782 112782 110531 112432 106868 105363 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 2%3%8%29%39%78%31%51%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Bldg B Job Number =2E+06 Wall Type =34 Wall Description =9 1/4 Wall Blank D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft)3299 2674 2674 2987 3299 3299 Applied Moment at Mid Ht = Msa (lb-in/ft)2894 13973 28333 14951 9412 30289 Ase (in2) = (Ps + As*fy) / fy 0.52 0.50 0.50 0.51 0.52 0.52 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.301 0.301 0.301 0.301 0.301 0.301 CE = C ELASTIC = k * d 1.28 1.28 1.28 1.28 1.28 1.28 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 41.09 40.42 40.42 40.75 41.09 41.09 M1 = Msa (lb-in)2894 13973 28333 14951 9412 30289 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 614 614 614 614 614 614 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))2967 14256 28907 15290 9648 31049 Ie2 (in4)614 614 614 614 614 614 M3 (lb-in)2967 14256 28907 15290 9648 31049 Ie3 (in4)614 614 614 614 614 614 M4 (lb-in)2967 14256 28907 15290 9648 31049 Ie4 (in4)614 614 614 614 614 614 M5 (lb-in)2967 14256 28907 15290 9648 31049 Ie5 (in4)614 614 614 614 614 614 M6 (lb-in)2967 14256 28907 15290 9648 31049 Ie6 (in4)614 614 614 614 614 614 M7 (lb-in)2967 14256 28907 15290 9648 31049 Ie7 (in4)614 614 614 614 614 614 l c / 150 (in)2.8 2.8 2.8 2.8 2.8 2.8 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.02 0.11 0.21 0.11 0.07 E+S is N/A OK OK OK OK OK OK OK Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5*U=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 A=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7EIRG Bldg B 2200672.20 61 Job Name = Job Number = Wall Type = Wall Description = Wall Ht =35 ft Wall Weight at Mid Height b =3.4 ft Wt of Concrete=150 pcf c =7 ft Wall Thickness=9.25 in. e =3.67 ft Concentric Load=1099 plf d =28 ft Seismic Fp=.4Sd*=0.3412 Wp a =1.7 ft a = b/2 Roof Weight Joist Span=50 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =20 psf Live Floor=0 psf eccentricity 6.25 inch equiv DL =439.07827 plf equiv SL =914.74639 plf c equiv Lr =731.79711 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =39.5 psf P wind equiv =32.1 psf P seismic equiv =56.3 psf Equivalent Wind and Seismic Load IRG Greenline Bldg B 2200672.2 37 MAN IRG Bldg B 2200672.20 62 Alternate Concrete Slender Wall Design (ACI 318-14 Sect 14.8) Job Name = Job Number = 2200672.20 Wall Type =37 Wall Description = 35 38 9.25 0.75 8.5 3.67 D = Dead Load 5000 S = Snow Load (2) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 11'' o.c. H = Soil Load L / 1359 E = Seismic Load (Ultimate)65% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)1099 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)6.25 Dead - D (plf) 439.0782656 D =229 D =114 Snow - S (plf) 914.7463867 S =476 S =238 Roof Live - Lr (plf) 731.7971094 Lr =381 Lr =191 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)0 -7946 E =-3973 Wind - W (lb-ft/ft)0 -4523 W =-2262 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)56.3 E =8622 Wind - W (psf)32.1 W =4908 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)3908 Dead - D (lb-ft/ft)114 Snow - S (plf)915 Snow - S (lb-ft/ft)238 Roof Live - Lr (plf)732 Roof Live - Lr (lb-ft/ft)191 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)4649 Wind - W (lb-ft/ft)2646 Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) MAN DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Bldg B Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK 4.00 Reinforcement Max Deflection % of Flexural Capacity The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 14.8.2.5 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB IRG Bldg B 2200672.20 63 Wall Parameters Wall Height Between Supports (ft)35 (Not including parapet) Parapet Height (ft)3 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)38 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)9.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)8.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?2 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)11 OK As per foot (in2/ft)0.33 (This is the area of tension steel only) Total As in Pier (in2)0.33 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)1.09 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.125 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)6.7 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0060 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.28 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.27 OK r 0.0042 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)102 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)420 = Wall Ht * 12 b1 0.8 Ig (in4/ft)614 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)4.25 = Struc Thk / 2 Mcr (lb-in)76633 = fr * Ig / yt l c / 150 (in)2.8 OK Job Name =IRG Greenline Bldg B Job Number =2200672.2 Wall Type =37 Wall Description =MAN Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. IRG Bldg B 2200672.20 64 *ASCE 7-11 IBC-2012 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft)5472 5147 6153 6153 5147 5997 3517 2851 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)1921 3076 6220 22098 34832 59668 32991 56787 Pu / Ag (psi)54 50 60 60 50 59 34 28 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 0.39 0.39 0.40 0.40 0.39 0.40 0.37 0.36 a (in) =(Ase*fy) / (0.85*fc*lw)0.46 0.46 0.47 0.47 0.46 0.47 0.44 0.43 CU = C ULTIMATE = a /b1 0.58 0.57 0.59 0.59 0.57 0.59 0.55 0.54 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 106.24 105.47 107.85 107.85 105.47 107.48 101.56 99.95 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =2796 4373 9523 33832 49524 90290 41789 68697 Mn (lb-in) = Ase * fy * (d - a/2) 152106 150823 154802 154802 150823 154184 144360 141710 Cu / d 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)136896 135741 139322 139322 135741 138766 129924 127539 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 2%3%7%24%36%65%32%54%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Bldg B Job Number =2E+06 Wall Type =37 Wall Description =MAN D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft)4823 3908 3908 4366 4823 4823 Applied Moment at Mid Ht = Msa (lb-in/ft)4231 20426 40422 21855 13758 43281 Ase (in2) = (Ps + As*fy) / fy 0.42 0.40 0.40 0.41 0.42 0.42 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.217 0.217 0.217 0.217 0.217 0.217 CE = C ELASTIC = k * d 1.45 1.45 1.45 1.45 1.45 1.45 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 94.12 91.11 91.11 92.61 94.12 94.12 M1 = Msa (lb-in)4231 20426 40422 21855 13758 43281 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 614 614 614 614 614 614 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))4388 21036 41630 22587 14268 44888 Ie2 (in4)614 614 614 614 614 614 M3 (lb-in)4388 21036 41630 22587 14268 44888 Ie3 (in4)614 614 614 614 614 614 M4 (lb-in)4388 21036 41630 22587 14268 44888 Ie4 (in4)614 614 614 614 614 614 M5 (lb-in)4388 21036 41630 22587 14268 44888 Ie5 (in4)614 614 614 614 614 614 M6 (lb-in)4388 21036 41630 22587 14268 44888 Ie6 (in4)614 614 614 614 614 614 M7 (lb-in)4388 21036 41630 22587 14268 44888 Ie7 (in4)614 614 614 614 614 614 l c / 150 (in)2.8 2.8 2.8 2.8 2.8 2.8 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.03 0.16 0.31 0.17 0.11 E+S is N/A OK OK OK OK OK OK OKA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7EA=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WU=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5* IRG Bldg B 2200672.20 65 Job Name = Job Number = Wall Type = Wall Description = Wall Ht =35 ft Wall Weight at Mid Height b =8 ft Wt of Concrete=150 pcf c =5 ft Wall Thickness=9.25 in. e =2.50 ft Concentric Load=3793 plf d =30 ft Seismic Fp=.4Sd*=0.3412 Wp a =4 ft a = b/2 Roof Weight Joist Span=50 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =20 psf Live Floor=0 psf eccentricity 6.25 inch equiv DL =780 plf equiv SL =1625 plf c equiv Lr =1300 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =39.5 psf P wind equiv =56.9 psf P seismic equiv =100.0 psf Equivalent Wind and Seismic Load IRG Greenline Bldg B 2200672.2 37 window 8' IRG Bldg B 2200672.20 66 Alternate Concrete Slender Wall Design (ACI 318-14 Sect 14.8) Job Name = Job Number = 2200672.20 Wall Type =37 Wall Description = 35 38 9.25 0.75 8.5 2.50 D = Dead Load 5000 S = Snow Load (2) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 8'' o.c. H = Soil Load L / 747 E = Seismic Load (Ultimate)91% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)3793 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)6.25 Dead - D (plf)780 D =406 D =203 Snow - S (plf)1625 S =846 S =423 Roof Live - Lr (plf)1300 Lr =677 Lr =339 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)0 -14116 E =-7058 Wind - W (lb-ft/ft)0 -8036 W =-4018 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)100.0 E =15316 Wind - W (psf)56.9 W =8719 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)6943 Dead - D (lb-ft/ft)203 Snow - S (plf)1625 Snow - S (lb-ft/ft)423 Roof Live - Lr (plf)1300 Roof Live - Lr (lb-ft/ft)339 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)8258 Wind - W (lb-ft/ft)4701 Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) window 8' DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Bldg B Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK 4.00 Reinforcement Max Deflection % of Flexural Capacity The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 14.8.2.5 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB IRG Bldg B 2200672.20 67 Wall Parameters Wall Height Between Supports (ft)35 (Not including parapet) Parapet Height (ft)3 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)38 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)9.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)8.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?2 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)7.5 OK As per foot (in2/ft)0.49 (This is the area of tension steel only) Total As in Pier (in2)0.49 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)1.60 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.125 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)6.7 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0088 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.28 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.27 OK r 0.0061 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)102 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)420 = Wall Ht * 12 b1 0.8 Ig (in4/ft)614 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)4.25 = Struc Thk / 2 Mcr (lb-in)76633 = fr * Ig / yt l c / 150 (in)2.8 OK Job Name =IRG Greenline Bldg B Job Number =2200672.2 Wall Type =37 Wall Description =window 8' Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. IRG Bldg B 2200672.20 68 *ASCE 7-11 IBC-2012 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft)9720 9144 10931 10931 9144 10653 6249 5064 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)3413 5464 11050 39257 61877 105993 58607 100876 Pu / Ag (psi)95 90 107 107 90 104 61 50 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 0.59 0.59 0.61 0.61 0.59 0.60 0.56 0.54 a (in) =(Ase*fy) / (0.85*fc*lw)0.70 0.69 0.71 0.71 0.69 0.71 0.66 0.64 CU = C ULTIMATE = a /b1 0.87 0.86 0.89 0.89 0.86 0.89 0.82 0.80 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 147.10 145.98 149.44 149.44 145.98 148.91 140.23 137.82 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =5703 8824 19897 70686 99924 187560 80379 129886 Mn (lb-in) = Ase * fy * (d - a/2) 225828 223634 230432 230432 223634 229377 212568 208021 Cu / d 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)203245 201270 207389 207389 201270 206439 191311 187219 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 3%4%10%34%50%91%42%69%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Bldg B Job Number =2E+06 Wall Type =37 Wall Description =window 8' D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft)8568 6943 6943 7755 8568 8568 Applied Moment at Mid Ht = Msa (lb-in/ft)7516 36285 71806 38825 24440 76884 Ase (in2) = (Ps + As*fy) / fy 0.63 0.61 0.61 0.62 0.63 0.63 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.256 0.256 0.256 0.256 0.256 0.256 CE = C ELASTIC = k * d 1.71 1.71 1.71 1.71 1.71 1.71 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 132.95 128.12 128.12 130.53 132.95 132.95 M1 = Msa (lb-in)7516 36285 71806 38825 24440 76884 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 614 614 614 614 614 609 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))8026 38257 75708 41196 26100 82150 Ie2 (in4)614 614 614 614 614 524 M3 (lb-in)8026 38257 75708 41196 26100 83083 Ie3 (in4)614 614 614 614 614 511 M4 (lb-in)8026 38257 75708 41196 26100 83254 Ie4 (in4)614 614 614 614 614 508 M5 (lb-in)8026 38257 75708 41196 26100 83285 Ie5 (in4)614 614 614 614 614 508 M6 (lb-in)8026 38257 75708 41196 26100 83291 Ie6 (in4)614 614 614 614 614 508 M7 (lb-in)8026 38257 75708 41196 26100 83292 Ie7 (in4)614 614 614 614 614 508 l c / 150 (in)2.8 2.8 2.8 2.8 2.8 2.8 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.06 0.28 0.56 0.31 0.19 E+S is N/A OK OK OK OK OK OK OKA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7EA=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WU=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5* IRG Bldg B 2200672.20 69 Job Name = Job Number = Wall Type = Wall Description = Wall Ht =35 ft Wall Weight at Mid Height b =16 ft Wt of Concrete=150 pcf c =5 ft Wall Thickness=9.25 in. e =2.50 ft Concentric Load=7585 plf d =30 ft Seismic Fp=.4Sd*=0.3412 Wp a =8 ft a = b/2 Roof Weight Joist Span=50 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =20 psf Live Floor=0 psf eccentricity 6.25 inch equiv DL =1260 plf equiv SL =2625 plf c equiv Lr =2100 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =39.5 psf P wind equiv =92.0 psf P seismic equiv =160.6 psf Equivalent Wind and Seismic Load IRG Greenline Bldg B 2200672.2 44 dbl window 8' IRG Bldg B 2200672.20 70 Alternate Concrete Slender Wall Design (ACI 318-14 Sect 14.8) Job Name = Job Number = 2200672.20 Wall Type =44 Wall Description = 35 38 9.25 0.75 8.5 2.50 D = Dead Load 5000 S = Snow Load (2) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 4'' o.c. H = Soil Load L / 165 E = Seismic Load (Ultimate)98% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)7585 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)6.25 Dead - D (plf)1260 D =656 D =328 Snow - S (plf)2625 S =1367 S =684 Roof Live - Lr (plf)2100 Lr =1094 Lr =547 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)0 -22664 E =-11332 Wind - W (lb-ft/ft)0 -12981 W =-6490 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)160.6 E =24591 Wind - W (psf)92.0 W =14084 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)11215 Dead - D (lb-ft/ft)328 Snow - S (plf)2625 Snow - S (lb-ft/ft)684 Roof Live - Lr (plf)2100 Roof Live - Lr (lb-ft/ft)547 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)13259 Wind - W (lb-ft/ft)7594 Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) dbl window 8' DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Bldg B Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK 7.00 Reinforcement Max Deflection % of Flexural Capacity The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 14.8.2.5 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB IRG Bldg B 2200672.20 71 Wall Parameters Wall Height Between Supports (ft)35 (Not including parapet) Parapet Height (ft)3 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)38 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)9.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)8.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?2 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)4.286 OK As per foot (in2/ft)0.86 (This is the area of tension steel only) Total As in Pier (in2)0.86 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)2.80 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.125 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)6.7 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0155 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.28 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.27 OK r 0.0107 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)102 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)420 = Wall Ht * 12 b1 0.8 Ig (in4/ft)614 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)4.25 = Struc Thk / 2 Mcr (lb-in)76633 = fr * Ig / yt l c / 150 (in)2.8 OK Job Name =IRG Greenline Bldg B Job Number =2200672.2 Wall Type =44 Wall Description =dbl window 8' Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. IRG Bldg B 2200672.20 72 *ASCE 7-11 IBC-2012 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft) 15701 14771 17658 17658 14771 17209 10094 8180 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)5513 8827 17850 63415 99956 170248 94673 161982 Pu / Ag (psi)154 145 173 173 145 169 99 80 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 1.03 1.02 1.05 1.05 1.02 1.04 0.97 0.95 a (in) =(Ase*fy) / (0.85*fc*lw)1.21 1.19 1.23 1.23 1.19 1.23 1.14 1.11 CU = C ULTIMATE = a /b1 1.51 1.49 1.54 1.54 1.49 1.53 1.42 1.39 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 211.63 210.44 214.11 214.11 210.44 213.55 204.26 201.65 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =10041 15395 35794 127164 174341 333727 135321 214999 Mn (lb-in) = Ase * fy * (d - a/2) 374293 371048 381095 381095 371048 379536 354635 347870 Cu / d 0.23 0.22 0.23 0.23 0.22 0.23 0.21 0.21 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)336864 333943 342985 342985 333943 341583 319171 313083 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 3%5%10%37%52%98%42%69%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Bldg B Job Number =2E+06 Wall Type =44 Wall Description =dbl window 8' D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft) 13840 11215 11215 12528 13840 13840 Applied Moment at Mid Ht = Msa (lb-in/ft) 12141 58615 115314 62717 39479 123517 Ase (in2) = (Ps + As*fy) / fy 1.09 1.05 1.05 1.07 1.09 1.09 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.323 0.323 0.323 0.323 0.323 0.323 CE = C ELASTIC = k * d 2.16 2.16 2.16 2.16 2.16 2.16 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 201.03 194.57 194.57 197.80 201.03 201.03 M1 = Msa (lb-in) 12141 58615 115314 62717 39479 123517 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 614 614 318 614 614 300 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))13531 63938 137432 69147 44000 156460 Ie2 (in4)614 614 267 614 614 250 M3 (lb-in) 13531 63938 142588 69147 44000 165314 Ie3 (in4)614 614 260 614 614 242 M4 (lb-in) 13531 63938 143583 69147 44000 167038 Ie4 (in4)614 614 258 614 614 241 M5 (lb-in) 13531 63938 143766 69147 44000 167347 Ie5 (in4)614 614 258 614 614 241 M6 (lb-in) 13531 63938 143800 69147 44000 167401 Ie6 (in4)614 614 258 614 614 241 M7 (lb-in) 13531 63938 143806 69147 44000 167411 Ie7 (in4)614 614 258 614 614 241 l c / 150 (in)2.8 2.8 2.8 2.8 2.8 2.8 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.10 0.47 2.54 0.51 0.33 E+S is N/A OK OK OK OK OK OK OKA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7EA=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WU=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5* IRG Bldg B 2200672.20 73 Job Name = Job Number = Wall Type = Wall Description = Wall Ht =35 ft Wall Weight at Mid Height b =9.5 ft Wt of Concrete=150 pcf c =5 ft Wall Thickness=9.25 in. e =2.50 ft Concentric Load=4504 plf d =30 ft Seismic Fp=.4Sd*=0.3412 Wp a =4.75 ft a = b/2 Roof Weight Joist Span=50 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =20 psf Live Floor=0 psf eccentricity 6.25 inch equiv DL =870 plf equiv SL =1812.5 plf c equiv Lr =1450 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =39.5 psf P wind equiv =63.5 psf P seismic equiv =111.4 psf Equivalent Wind and Seismic Load IRG Greenline Bldg B 2200672.2 44 window 9'6" IRG Bldg B 2200672.20 74 Alternate Concrete Slender Wall Design (ACI 318-14 Sect 14.8) Job Name = Job Number = 2200672.20 Wall Type =44 Wall Description = 35 38 9.25 0.75 8.5 2.50 D = Dead Load 5000 S = Snow Load (2) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 6'' o.c. H = Soil Load L / 505 E = Seismic Load (Ultimate)82% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)4504 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)6.25 Dead - D (plf)870 D =453 D =227 Snow - S (plf)1812.5 S =944 S =472 Roof Live - Lr (plf)1450 Lr =755 Lr =378 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)0 -15719 E =-7859 Wind - W (lb-ft/ft)0 -8963 W =-4481 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)111.4 E =17055 Wind - W (psf)63.5 W =9725 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)7744 Dead - D (lb-ft/ft)227 Snow - S (plf)1813 Snow - S (lb-ft/ft)472 Roof Live - Lr (plf)1450 Roof Live - Lr (lb-ft/ft)378 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)9196 Wind - W (lb-ft/ft)5244 Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) window 9'6" DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Bldg B Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK 5.00 Reinforcement Max Deflection % of Flexural Capacity The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 14.8.2.5 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB IRG Bldg B 2200672.20 75 Wall Parameters Wall Height Between Supports (ft)35 (Not including parapet) Parapet Height (ft)3 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)38 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)9.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)8.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?2 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)6 OK As per foot (in2/ft)0.61 (This is the area of tension steel only) Total As in Pier (in2)0.61 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)2.00 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.125 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)6.7 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0111 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.28 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.27 OK r 0.0076 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)102 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)420 = Wall Ht * 12 b1 0.8 Ig (in4/ft)614 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)4.25 = Struc Thk / 2 Mcr (lb-in)76633 = fr * Ig / yt l c / 150 (in)2.8 OK Job Name =IRG Greenline Bldg B Job Number =2200672.2 Wall Type =44 Wall Description =window 9'6" Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. IRG Bldg B 2200672.20 76 *ASCE 7-11 IBC-2012 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft) 10841 10199 12193 12193 10199 11883 6970 5648 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)3806 6095 12325 43786 69017 118041 65369 112333 Pu / Ag (psi)106 100 120 120 100 116 68 55 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 0.73 0.72 0.74 0.74 0.72 0.74 0.69 0.67 a (in) =(Ase*fy) / (0.85*fc*lw)0.86 0.85 0.87 0.87 0.85 0.87 0.81 0.79 CU = C ULTIMATE = a /b1 1.07 1.06 1.09 1.09 1.06 1.09 1.01 0.99 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 170.24 169.14 172.52 172.52 169.14 172.00 163.51 161.15 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =6210 9621 21608 76765 108952 203501 88229 142746 Mn (lb-in) = Ase * fy * (d - a/2) 273554 271171 278553 278553 271171 277407 259147 254204 Cu / d 0.16 0.16 0.16 0.16 0.16 0.16 0.15 0.15 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)246198 244054 250698 250698 244054 249666 233232 228784 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 3%4%9%31%45%82%38%62%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Bldg B Job Number =2E+06 Wall Type =44 Wall Description =window 9'6" D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft)9556 7744 7744 8650 9556 9556 Applied Moment at Mid Ht = Msa (lb-in/ft)8383 40472 79964 43304 27260 85628 Ase (in2) = (Ps + As*fy) / fy 0.77 0.74 0.74 0.76 0.77 0.77 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.281 0.281 0.281 0.281 0.281 0.281 CE = C ELASTIC = k * d 1.88 1.88 1.88 1.88 1.88 1.88 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 155.09 150.07 150.07 152.58 155.09 155.09 M1 = Msa (lb-in)8383 40472 79964 43304 27260 85628 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 614 614 559 614 614 484 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))9023 42941 85359 46276 29341 94096 Ie2 (in4)614 614 486 614 614 403 M3 (lb-in)9023 42941 86230 46276 29341 96006 Ie3 (in4)614 614 476 614 614 389 M4 (lb-in)9023 42941 86373 46276 29341 96442 Ie4 (in4)614 614 474 614 614 385 M5 (lb-in)9023 42941 86396 46276 29341 96542 Ie5 (in4)614 614 474 614 614 385 M6 (lb-in)9023 42941 86400 46276 29341 96564 Ie6 (in4)614 614 474 614 614 385 M7 (lb-in)9023 42941 86401 46276 29341 96570 Ie7 (in4)614 614 474 614 614 384 l c / 150 (in)2.8 2.8 2.8 2.8 2.8 2.8 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.07 0.32 0.83 0.34 0.22 E+S is N/A OK OK OK OK OK OK OKA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7EA=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WU=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5* IRG Bldg B 2200672.20 77 Job Name = Job Number = Wall Type = Wall Description = Wall Ht =35 ft Wall Weight at Mid Height b =9.5 ft Wt of Concrete=150 pcf c =5 ft Wall Thickness=9.25 in. e =6.67 ft Concentric Load=1689 plf d =30 ft Seismic Fp=.4Sd*=0.3412 Wp a =4.75 ft a = b/2 Roof Weight Joist Span=50 feet Dead Load=12 psf d Snow Load=25 psf Live Roof =20 psf Live Floor=0 psf eccentricity 6.25 inch equiv DL =513.73931 plf equiv SL =1070.2902 plf c equiv Lr =856.23219 plf equiv LL =0 plf b e P wind =21.9 psf P seismic =39.5 psf P wind equiv =37.5 psf P seismic equiv =66.4 psf Equivalent Wind and Seismic Load IRG Greenline Bldg B 2200672.2 49 window 9'6" IRG Bldg B 2200672.20 78 Alternate Concrete Slender Wall Design (ACI 318-14 Sect 14.8) Job Name = Job Number = 2200672.20 Wall Type =49 Wall Description = 35 38 9.25 0.75 8.5 6.67 D = Dead Load 5000 S = Snow Load (2) Layer Lr = Roof Live Load #5 Rebar @ L = Occupancy Live Load 11'' o.c. H = Soil Load L / 1147 E = Seismic Load (Ultimate)85% W = Wind Load Applied Loads S NO YES YES 0.853 f 1 =0.5 f 2 =0.7 Uniform Concentric Applied Loads (W C) Dead - D (plf)1689 (tributary wall weight at midheight) Snow - S (plf)0 Roof Live - Lr (plf)0 Occupancy Live - L (plf)0 Soil - H (plf)0 Uniform Eccentric Applied Loads (W E) Eccentricity (in)6.25 Dead - D (plf) 513.739313 D =268 D =134 Snow - S (plf) 1070.290235 S =557 S =279 Roof Live - Lr (plf) 856.2321884 Lr =446 Lr =223 Occupancy Live - L (plf)0 L =0 L =0 Soil - H (plf)0 H =0 H =0 Uniform Moments Applied (MTOP)(MBOT) Dead - D (lb-ft/ft)0 0 D =0 Snow - S (lb-ft/ft)0 0 S =0 Roof Live - Lr (lb-ft/ft)0 0 Lr =0 Occupancy Live - L (lb-ft/ft)0 0 L =0 Soil - H (lb-ft/ft)0 0 H =0 Seismic (Ultimate) - E (lb-ft/ft)0 -9374 E =-4687 Wind - W (lb-ft/ft)0 -5293 W =-2646 Equivalent Uniform Lateral Applied Loads (P) Seismic (Ultimate) - E (psf)66.4 E =10171 Wind - W (psf)37.5 W =5743 Total Uniform Axial Load at Mid-Height of Wall Total Uniform Moment at Mid-Height of Wall Dead - D (plf)4573 Dead - D (lb-ft/ft)134 Snow - S (plf)1070 Snow - S (lb-ft/ft)279 Roof Live - Lr (plf)856 Roof Live - Lr (lb-ft/ft)223 Occupancy Live - L (plf)0 Occupancy Live - L (lb-ft/ft)0 Soil - H (plf)0 Soil - H (lb-ft/ft)0 Seismic (Ultimate) - E (lb-ft/ft)5484 Wind - W (lb-ft/ft)3096 Is the design snow load less than or equal to 30 psf? Wall Ht Btwn Supports (ft) Total Wall Ht w/ Parapet (ft) Total Wall Thickness (in) window 9'6" DESIGN SUMMARY Reveal Depth (in) Structural Thickness (in) IRG Greenline Bldg B Pier Width (ft) Output Number of Bars Ea Face (or at Center) of Pier Concrete Strength (psi) Hand Input Potential Hand Input Moment @ Mid-Ht (lb-ft/ft) = 1/8 PL2 Moment @ Mid-Ht (lb-ft/ft) = 1/2 (MTOP + MBOT) Moment at Top (lb-ft/ft) = WE * e Moment at Mid-Ht (lb-ft/ft) = 1/2 MTOP Seismic: Sds What is the controlling type of roof load? Snow or Roof Live Load? (Enter "S" or "Lr") Are you applying occupancy live loads for places of public assembly, or live loads in excess of 100 psf, or parking garage live loads? (YES:f 1 = 1.0, NO:f 1 = 0.5) Do you have a roof config that prevents snow from shedding off the structure? (YES:f 2 = 0.7, NO:f 2 = 0.2) OK 7.00 Reinforcement Max Deflection % of Flexural Capacity The uniform moments applied to the top and bottom of the wall can be used to model loads from a wall above or below, or to model lateral parapet forces. Enter positive numbers to increase the moment induced at the mid-height of the wall being designed and negative numbers to reduce the moment. Note that these totals represent the unfactored forces at the mid-height of the wall including the self wt of the wall (this spreadsheet automatically calcs wall self wt). P-D effects have not been accounted for. These forces can be overridden by entering your own mid-height axial loads and moments determined from hand calculations. You will still have to enter information describing the loads so that the proper f1, f2 and f3 load factors are properly applied. Remember to enter the loads unfactored and include the self-weight of the section of wall being analyzed. Note that soil forces are not allowed to counteract wind or seismic forces. In addition, soil forces that counteract other forces are not allowed to be factored and should be accounted for in hand See ACI 14.8.2.5 for distribution of concentrated forces e C of structural thickness WE WC L MT MB P If you need to make modifications to any other part of the spreadsheet besides the yellow cells the password is "save" MB IRG Bldg B 2200672.20 79 Wall Parameters Wall Height Between Supports (ft)35 (Not including parapet) Parapet Height (ft)3 (This is used to calc the self-weight of the wall only)Rebar Dia (in)A (in2) Total Wall Height (ft)38 3 0.375 0.11 Concrete Strength f'c (psi)5000 4 0.500 0.20 Concrete Unit Weight (pcf)150 5 0.625 0.31 Rebar Yield Stress fy (psi)60000 6 0.750 0.44 Width of Pier Being Designed (ft)1 (Width of pier, or enter 1 ft for analyzing unit width)7 0.875 0.60 Total Wall Thickness (in)9.25 8 1.000 0.79 Depth of Reveal (in)0.75 65 9 1.128 1.00 Structural Thickness (in)8.50 = Total Thk - Reveal Depth 10 1.270 1.27 (1) or (2) Layers of Reinf?2 OK 11 1.410 1.56 Vert Rebar Size 5 0.31 in2 0.625 in Vert Rebar o.c. Spacing (in)11.428 OK As per foot (in2/ft)0.32 (This is the area of tension steel only) Total As in Pier (in2)0.32 (This is the area of tension steel only) Number of Bars within Pier (Ea Face)1.05 ACI Min Cover Reqments: Are You Providing Confinement Reinf?YES #5 & Smaller - 1 1/2" Confinement Rebar Size 3 0.375 in #6 & Larger - 2" Conc Cover at Ext Side of Wall Exp to Weather/Earth (in)1.125 #11 & Smaller = 3/4" Conc Cover at Int Side of Wall Not Exp to Weather/Earth (in)1 Min Depth to Tension Rebar = d (in)6.7 (w/ 2 layers of rebar, d = Struc Width - Max Cover - Confine f - 1/2 Vert f) Min Vertical Steel Ratio -rv min 0.0025 (rv min may be reduced if the shear force is low. See ACI 21.7.2) Actual Vertical Steel Ratio -rv 0.0058 OK Based on total wall thk not struc thk = (Rebar A * # Layers / Spacing) / (Total Thk) Min Tensile Flexural Reinf 1 = As min 1 (in2/ft)0.28 OK Min Tensile Flexural Reinf 2 = As min 2 (in2/ft)0.27 OK r 0.0040 = As per ft / (12 * d) rmax = 0.6 rb = 0.6 * 0.85 *b1 * fc / fy * 87000 / (87000 + fy)0.0201 OK Ec (psi) 4030509 = 57000 * sqrt (f'c) Es (psi) 29000000 n 7.2 = Es / Ec Mu (lb-in) = Mua / (1 - (5 * Pu * Lc l w (in)12 = 12" Ag (in2/ft)102 = Struc Thk * 12 0.06 f'c (psi)300 l c (in)420 = Wall Ht * 12 b1 0.8 Ig (in4/ft)614 = 1/12 * 12 * Struc Thk3 fr (psi)530 = 7.5 * sqrt (f'c) yt (in)4.25 = Struc Thk / 2 Mcr (lb-in)76633 = fr * Ig / yt l c / 150 (in)2.8 OK Job Name =IRG Greenline Bldg B Job Number =2200672.2 Wall Type =49 Wall Description =window 9'6" Not Exposed to Weather: Exposed to Weather: Pier Width = bw d d Vert Spcg Struc Thk Per ACI 14.3.6 lateral ties need not be provided where vert reinf is not req'd as compression reinf. Thus walls designed using this method do not need to have confinement steel. But in many cases is still advisable, particularly with 2 layers of rebar. Verify "d" with hand calcs also The width of the pier doesn't affect the structural design since loads are input per linear foot. Pier width is for your reference so you can track your calculations. This does calculate the actual number of bars required within the pier width you input. IRG Bldg B 2200672.20 80 *ASCE 7-11 IBC-2012 12.4.2.3 D 1.4 1.2 1.2 1.2 1.2 1.3706 0.9 0.7294 S 0 0.5 1.6 1.6 0.5 0.7 0 0 Lr 0 0 0 0 0 0 0 0 L 0 1.6 0.5 0 0.5 0.5 0 0 H 0 1.6 0 0 0 0 1.6 1.6 E 0 0 0 0 0 1.0 0 1.0 W 0 0 0 0.5 1 0 1 0 Factored Axial Load at Mid Ht = Pu (lb/ft)6402 6023 7200 7200 6023 7017 4116 3335 Factored Applied Moment at Mid Ht = Mua (lb-in/ft)2248 3599 7278 25856 40755 70351 38601 66980 Pu / Ag (psi)63 59 71 71 59 69 40 33 Vert Stress at Mid-Ht Wall ok? Pu / Ag < 0.06 f'c?OK OK OK OK OK OK OK OK OK Ase (in2) = (Pu(h/2d) + As*fy) / fy 0.39 0.39 0.40 0.40 0.39 0.40 0.37 0.36 a (in) =(Ase*fy) / (0.85*fc*lw)0.46 0.45 0.47 0.47 0.45 0.47 0.43 0.42 CU = C ULTIMATE = a /b1 0.57 0.57 0.59 0.59 0.57 0.58 0.54 0.53 Icr U (in4) = Icr ULTIMATE = n*Ase*(d-CU)2 + 1/3*l w*CU3 105.64 104.74 107.53 107.53 104.74 107.10 100.14 98.24 Mu (lb-in) = Mua / (1 - (5 * Pu * Lc2)/(0.75 * 48 * Ec * Icr)) =3558 5533 12273 43603 62655 116912 51455 84398 Mn (lb-in) = Ase * fy * (d - a/2) 151105 149602 154261 154261 149602 153537 142034 138929 Cu / d 0.09 0.08 0.09 0.09 0.08 0.09 0.08 0.08 f = 0.23 + 0.25 /(Cu / d)0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 fMn (lb-in)135994 134642 138835 138835 134642 138183 127830 125036 fMn > Mcr ?OK OK OK OK OK OK OK OK OK Mu /fMn 3%4%9%31%47%85%40%67%POSITIVE fMn > Mu ?OK OK OK OK OK OK OK OK OK Job Name =IRG Greenline Bldg B Job Number =2E+06 Wall Type =49 Wall Description =window 9'6" D 1 1 1 1 1 1 S 1 0 0 0.5 1 1 Lr 0 0 0 0 0 0 L 1 1 1 1 1 1 H 1 1 1 1 1 1 E 0 0 0.70 0 0 0.70 W 0 0.6 0 0.6 0.3 0 Axial Load at Mid Ht = Ps (lb/ft)5643 4573 4573 5108 5643 5643 Applied Moment at Mid Ht = Msa (lb-in/ft)4950 23899 47672 25571 16097 51016 Ase (in2) = (Ps + As*fy) / fy 0.42 0.40 0.40 0.41 0.42 0.42 k = Sqrt ((n*p)2 + 2*n*p) - n*p 0.213 0.213 0.213 0.213 0.213 0.213 CE = C ELASTIC = k * d 1.43 1.43 1.43 1.43 1.43 1.43 Icr E (in4) = Icr ELASTIC = n*Ase*(d-CE)2 + 1/3*l w*CE3 94.50 90.95 90.95 92.73 94.50 94.50 M1 = Msa (lb-in)4950 23899 47672 25571 16097 51016 Ie1 (in4) = { (Mcr / M)3 * Ig + (1-(Mcr / M)3) * Icr E } < Ig 614 614 614 614 614 614 M2 (lb-in) = Msa / (1 - (5 * Ps * Lc2) / (48 * Ec * Ie1))5167 24739 49347 26579 16801 53247 Ie2 (in4)614 614 614 614 614 614 M3 (lb-in)5167 24739 49347 26579 16801 53247 Ie3 (in4)614 614 614 614 614 614 M4 (lb-in)5167 24739 49347 26579 16801 53247 Ie4 (in4)614 614 614 614 614 614 M5 (lb-in)5167 24739 49347 26579 16801 53247 Ie5 (in4)614 614 614 614 614 614 M6 (lb-in)5167 24739 49347 26579 16801 53247 Ie6 (in4)614 614 614 614 614 614 M7 (lb-in)5167 24739 49347 26579 16801 53247 Ie7 (in4)614 614 614 614 614 614 l c / 150 (in)2.8 2.8 2.8 2.8 2.8 2.8 Ds (in) = (5 * M7 * Lc2) / (48 * Ec * Ie7)0.04 0.18 0.37 0.20 0.12 E+S is N/A OK OK OK OK OK OK OKA=D+L+(LrorS)A=D+L+.6WU=1.4DU=1.2D+1.6(L+H)+0.5(LrorS)U=1.2D+1.6(LrorS)+f1LA=D+L+0.7EA=D+L+.6W+S/2A=D+L+S+.3WA=D+L+S+.7EU=1.2D+W+f1L+0.5(LrorS)U=(1.2+0.2Sds)D+1.0E+f1L+f2SU=1.2D+1.6(LrorS)+0.5WU=(0.9-0.2Sds)D+1.0E+1.6HU=0.9D+W+1.6HLoad Combo 16-4 Load Combo 16-6 Load Combo 16-7* Load Combo 16-1 Load Combo 16-2 Load Combo 16-3(a) Load Combo 16-3(b) Load Combo 16-5* IRG Bldg B 2200672.20 81